
Download the full report at www.deloitte.co.uk/techtrends

UK Edition

Chapter Extract

Tech Trends 2014
Technical debt reversal

Tech Trends 2014: Technical debt reversal

2

Technical debt is a way to understand the cost of code quality and the impacts of
architectural issues. For IT to help drive business innovation, managing technical debt is
a necessity. Legacy systems can constrain growth because they may not scale; because
they may not be extensible into new scenarios like mobile or analytics; or because
underlying performance and reliability issues may put the business at risk. But it’s not
just legacy systems: New systems can incur technical debt even before they launch.
Organisations should purposely reverse their debt to better support innovation and
growth – and revamp their IT delivery models to minimise new debt creation.

Technical debt reversal
Lowering the IT debt ceiling

TECHNICAL debt is not a new term, but it’s gaining
renewed interest. Originally coined by Ward

Cunningham in 1992, the phrase describes the “not quite
right” code typically introduced with initial software
releases because of an incomplete understanding of how
the system should work.1 Organisations that regularly repay
technical debt by consolidating and revising software as
their understanding grows will likely be better positioned to
support investments in innovation. And like financial debt,
organisations that don’t “pay it back” can be left allocating the
bulk of their budgets to interest (i.e., system maintenance),
with little remaining to develop software that can support
new opportunities.

Technical debt is often the result of programmers taking
shortcuts or using unsophisticated techniques. It’s typically
misfeasance, not malfeasance. For example, a developer
may copy and paste code blocks without thinking through
the longer-term consequences. If the code ever needs to
be updated, someone will have to remember to fix it in
each instance.

But sometimes, technical debt is simply the result of
dealing with complex requirements. To meet a project
deadline, complicated proprietary code may be developed,
even though simpler alternatives may have been available.
With each such action, technical debt proliferates. This is like
high-interest, short-term borrowing. If you don’t pay off the
debt promptly, compounding kicks in.

The impact of accumulated technical debt can be
decreased efficiency, increased cost, and extended delays
in the maintenance of existing systems. This can directly
jeopardise operations, undermining the stability and
reliability of the business over time. It also can hinder the
ability to innovate and grow.

Articulating technical debt is the first step in paying off its
balance. With new tools for scanning and assessing software
assets, CIOs can now gauge the quality of their legacy
footprint – and determine what it would cost to eliminate
the inevitable debt. A recent study suggests that an average of
$3.61 of technical debt exists per line of code, or an average of
more than $1 million per system.2 Gartner says that “current
global IT debt is estimated to stand at $500 billion, with the

3

Technical debt reversal

potential to rise to $1 trillion by 2015.”3 While the idea of
debt doubling in a year’s time may seem astonishing, we’re
in the midst of unprecedented investments in disruptive
technologies – often with deep hooks into core systems.
The push for rapid innovation in unproven domains is also
leading to compounding debt.

These estimates address only the literal definition of
technical debt – how much it would cost to fix the exposed
code quality issues. But there’s also another dimension,
which we call “architectural debt.” Architectural debt refers
to the opportunity costs associated with system outages
or the inability to deliver new capabilities. In some cases,
architecturally complex defects can absorb as much as 52
percent of the total effort spent repairing defects.4 They can
also derail new initiatives.

Technical debt is not limited to legacy systems; every new
project has the potential to add to the backlog. With that in
mind, you should incorporate the cost of technical debt into
project management processes and portfolio reporting. This
kind of transparency can not only raise awareness of quality
among development teams, but can also provide a foundation
for talking to the business about the hidden cost of IT
delivery. By documenting your debt-decreasing efforts, you
can account for those efforts – important progress that would
likely not otherwise be visible (or appreciated).5

The ability to quantify technical debt can provide a
common point of reference for the C-suite when you are
deciding how to prioritise IT projects for an organisation.
Typically, technical debt should be paid down within
the context of delivering against business priorities by
incrementally refactoring existing solutions and using
improved development processes to minimise new debt
accumulation. Incorporating techniques described in our
Real-time DevOps chapter6 can help reduce waste generated
when software is developed.

Some organisations may also need to spur projects
that address especially messy issues such as bolstering
performance, preventing production issues, or preparing
for future strategic investments. The goal is a sustained,
prioritised reduction of the balance sheet, where each project
systematically improves on the baseline.

For most organisations, technical debt comes with the
territory, an unavoidable outcome of decades of technology
spend. The big question is: How will you manage the liability?
Understanding, containing, and mitigating technical debt can
be a platform, not only for a stronger IT foundation, but for a
renewed level of trust and transparency with the business.

Technical debt per line of code within
a typical application.1

$3.61

The defect removal efficiency of most
forms of testing.2

Estimated global annual expenditure on
software debugging in 2012.3

Portion of total effort spent repairing
architecturally complex defects, though
they account for only 8% of all defects.4

Sources: 1 Alexandra Szynkarski, "Time to start estimating technical debt,"
October 29, 2012, http://www.ontechnicaldebt.com/blog/time-to-start-
estimating-technical-debt, accessed December 27, 2013. 2 Namcook
Analytics LLC, "Software defect origins and removal methods," July 21, 2013,
http://namcookanalytics.com/software-defect-origins-and-removal-methods,
accessed January 6, 2014. 3 University of Cambridge, "Financial content:
Cambridge University study states software bugs cost economy $312 billion
per year," https://www.jbs.cam.ac.uk/media/2013/financial-content-
cambridge-university-study-states-software-bugs-cost-economy-312-
billion-per-year/#.UryqUGRDsS4%20, accessed December 27, 2013.
4 B. Curtis, "Architecturally complex defects," December 19, 2012,
http://it-cisq.org/architecturally-complex-defects, accessed December 27, 2013.

35 PERCENT

$312 BILLION

52 PERCENT

Tech Trends 2014: Technical debt reversal

4

Countdown to zero technical debt
NASA’s Mars Science Laboratory project was classified as a “flagship mission” – the agency’s first in almost a

decade. It was a $2.5 billion project to land a car-sized, roving science laboratory, Curiosity, on Mars. The rover
launched in 2011 and landed on Mars on August 5, 2012, with the continuing objective of determining whether
Mars ever contained the building blocks for life.

Building a roving science lab is an immense challenge. Curiosity is an order of magnitude larger than any rover
that had previously landed on Mars: It weighs almost a ton, stands seven feet tall, contains a robotic arm that could
easily pick up a person, and includes a laser that vaporises rocks. Curiosity’s software is essentially the brain of the
rover – integrating its many hardware functions to provide mission-critical functionality such as the descent and
landing sequence, autonomous driving, avionics, telecommunications, and surface sample handling.

The software initially developed for Curiosity was inherited from previous rover missions. The core architecture
was developed in the 1990s on a shoestring budget. The Curiosity project put approximately four years of work into
building on top of that architecture for NASA’s most complex mission to date. As the launch date approached, NASA
started to see that the project wasn’t coming together: The software had bugs and inexplicably failed tests; there were
issues with the hardware and the fabrication of key components.

The project faced a difficult question: Do we push on towards a 2009 launch or delay the mission? The unique
aspect of launching a mission to Mars is that the opportunity only exists once every 26 months, when Earth and
Mars align. If they delayed the launch two years, there was a risk that the project might be cancelled altogether.

The project team decided to postpone the mission and began an incredible regrouping effort. The software team
had to quickly decide whether to fix the current software or to start over completely from scratch. Given the existing
software’s technical debt, it was unlikely they could determine the magnitude of the lurking issues, or confidently
plan for new project milestones. The decision was made to tear down the foundation and rebuild using the old
code as a reference.

The team started from the beginning: revisiting the requirements, software design, coding, and reviews, and
testing and implementing standard processes. The team instituted what they called the “Power Ten,” a set of
10 basic rules each developer followed. The team developed coding standards, implemented multiple automated code
analysers and testing tools, and established a cadence of releases – one every four months. They unit tested every line
of code and instituted code reviews early in the development lifecycle. Two hundred code reviews produced 10,000
peer comments and 25,000 tool comments – each one reviewed and resolved.

The results were staggering: 3.5 million lines of code, over 1 million hand-written, across 150 different modules.
But this time, the numerous bugs and unexplained failures were gone. The standards, though they required additional
work, added stability and quality. And with the fresh start, the team were adamant that technical debt be minimised –
building a new foundation for future missions.

Though NASA’s approach required a remarkably difficult decision, the results were worth the effort. The world can
now watch as Curiosity tells us more than we ever dreamed we might know about Mars. And the achievements of the
mission led to the announcement of a new $1.5 billion mission to Mars in 2020.

5

Technical debt reversal

Where do you start?

Technical debt calculation can begin when you have
clear visibility to the quality of code for legacy systems
as well as projects on the horizon. Only with both sets
of information can you make the trade-offs necessary to
manage technical debt effectively. For companies eager
to get ahead of the technical debt curve, here are some
important steps:

• Assess the status of code for all significant
investments. Calculate your technical debt. Know
the size of the hole you’re in – and whether or not it’s
getting deeper. Evaluate the importance of each system
to understand whether the technical debt has to be
addressed – and in what timeframe. Aim for surgical
repairs when possible, but recognise that some ageing
systems may be beyond incremental fixes. Prevention
is preferred, but early detection at least allows for a
thoughtful response.

• Find out how future investments are dependent
on your legacy systems. Is your architecture ready
for new initiatives? Can it scale appropriately? How
well are back-end complications understood and
fed into planning efforts? Should you launch legacy
modernisation efforts now to get ahead of impending
business demands?

• Think through the availability of talent to support
debt remediation. For some aging systems, your
resources may not be sufficient for cost-effective
updating. Talent should be factored into your analysis.
Think of it as a multiplier on top of the raw technical
debt calculation – and use it to define priorities
and timelines.

• Hold developers accountable. Consider rating and
rewarding developers on the quality of their code. In
some cases, fewer skilled developers may be better than
volumes of mediocre resources whose work may require
downstream reversal of debt. Regularly run code
complexity reviews and technical debt assessments,
sharing the results across the team. Not only can
specific examples help the team improve, but trends can
signal that a project is headed in the wrong direction or
encountering unexpected complexity.

• Spread the wealth (and the burden). Communities
are great ways to identify and address technical debt.
Peer code reviews are leading practices for informal
spot checks. Formal quality assessments by seasoned
architects can find issues that would be undetectable
with standard QA processes. Learn from open source
communities, where quality is continuously refined
by the extended pool of developers poring over each
other’s code.7

• Determine your debt repayment philosophy.
Companies have different profiles when it comes to
debt for the various parts of their asset pools. Debt
is not inherently bad; it can fuel new investments
and accelerate product launches. But left unchecked,
it can be crippling. There’s no single right answer
for the appropriate amount of technical debt, but
its accumulation should be a conscious, transparent
decision.

Tech Trends 2014: Technical debt reversal

6

Bottom line
When CIOs operate like venture capitalists,8 technical debt is a big part of the financial picture.

Without a clear view of the real cost of legacy systems, CIOs lack the information required to make
effective decisions about new initiatives and investments. While it’s important not to get obsessed with
technical debt, it’s also critical to understand and plan for it. Every new project automatically comes with
technical debt as a cost of doing business. Reversing technical debt is a long-term investment, but if left
unaddressed, it can bankrupt your ability to build for the future. Capers Jones, a long-term technical debt
specialist, once said: “If you skimp on quality before you deliver software, you end up paying heavy interest
downstream after the software is released for things you could have gotten rid of earlier, had you been
more careful.”9 He was right.

Authors
Scott Buchholz, director, Deloitte Consulting LLP
David Sisk, director, Deloitte Consulting LLP

1. Ward Cunningham, “The WyCash Portfolio Management System,” http://c2.com/doc/oopsla92.html, accessed December 31, 2013.

2. CAST, “Technical debt estimation,” http://www.castsoftware.com/research-labs/technical-debt-estimation, accessed January 9, 2014.

3. Andy Kyte, “Measure and manage your IT debt,” Gartner, Inc., August 9, 2010 (last reviewed June 19, 2013).

4. B. Curtis, “Architecturally complex defects,” December 19, 2012, http://it-cisq.org/architecturally-complex-defects/, accessed January 9, 2014

5. David K. Williams, “The hidden debt that could be draining your company,” Forbes, January 25, 2013, http://www.forbes.com/
sites/davidkwilliams/2013/01/25/the-hidden-debt-that-could-be-draining-your-company/, accessed December 21, 2013.

6. Deloitte Consulting LLP, Tech Trends 2014: Inspiring disruption, 2014, chapter 10.

7. Simon Phipps, “Oracle’s closed approach keeps Java at risk,” Infoworld, April 26, 2013, http://www.infoworld.com/d/
open-source-software/oracles-closed-approach-keeps-java-risk-217297, accessed December 21, 2013.

8. Deloitte Consulting LLP, Tech Trends 2014: Inspiring disruption, 2014, chapter 1.

9. Joe McKendrick, “Will software publishers ever shake off their ‘technical debt’?,” ZDNet, January 26, 2013, http://www.zdnet.
com/will-software-publishers-ever-shake-off-their-technical-debt-7000010366/, accessed December 21, 2013.

7

Technical debt reversal

About Deloitte University Press
Deloitte University Press publishes original articles, reports and periodicals that provide insights for businesses, the public sector
and NGOs. Our goal is to draw upon research and experience from throughout our professional services organization, and that
of coauthors inacademia and business, to advance the conversation on a broad spectrum of topics of interest to executives and
government leaders.

Deloitte University Press is an imprint of Deloitte Development LLC.

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited (“DTTL”), a UK private company limited by guarantee, and its
network of member firms, each of which is a legally separate and independent entity. Please see www.deloitte.co.uk/about for
a detailed description of the legal structure of DTTL and its member firms.

Deloitte MCS Limited is a subsidiary of Deloitte LLP, the United Kingdom member firm of DTTL.

This publication has been written in general terms and therefore cannot be relied on to cover specific situations; application of the
principles set out will depend upon the particular circumstances involved and we recommend that you obtain professional advice
before acting or refraining from acting on any of the contents of this publication. Deloitte MCS Limited would be pleased to advise
readers on how to apply the principles set out in this publication to their specific circumstances. Deloitte MCS Limited accepts no
duty of care or liability for any loss occasioned to any person acting or refraining from action as a result of any material in this
publication.

© 2014 Deloitte MCS Limited. All rights reserved.

Registered office: Hill House, 1 Little New Street, London EC4A 3TR, United Kingdom. Registered in England No 3311052.

Designed and produced by The Creative Studio at Deloitte, London. 32430A

Contacts

John Starling
Partner, Technology
Consulting
Deloitte MCS Limited
020 7007 2389
jstarling@deloitte.co.uk

Kevin Walsh
Head of Technology Consulting
Deloitte MCS Limited
020 7303 7059
kwalsh@deloitte.co.uk

