
Exposing Surveillance Detection Routes via
Reinforcement Learning, Attack Graphs, and Cyber

Terrain
Lanxiao Huanga∗, Tyler Codya, Christopher Redinob, Abdul Rahmanb,

Akshay Kakkarb, Deepak Kushwahab, Cheng Wangb, Ryan Clarkb,
Daniel Radkeb, Peter Belinga, Edward Bowenb

aNational Security Institute, Virginia Polytechnic University
bDeloitte & Touche LLP

∗Corresponding author: Lanxiao Huang: hlanxiao@vt.edu

Abstract—Reinforcement learning (RL) operating on attack
graphs leveraging cyber terrain principles are used to develop
reward and state associated with determination of surveillance
detection routes (SDR). This work extends previous efforts on
developing RL methods for path analysis within enterprise
networks. This work focuses on building SDR where the routes
focus on exploring the network services while trying to evade
risk. RL is utilized to support the development of these routes
by building a reward mechanism that would help in realization
of these paths. The RL algorithm is modified to have a novel
warm-up phase which decides in the initial exploration which
areas of the network are safe to explore based on the rewards
and penalty scale factor.

Index Terms—attack graphs, reinforcement learning, surveil-
lance detection routes, SDR, cyber terrain

I. INTRODUCTION

Reconnaissance (also called recon) in MITRE’s Adversarial
Tactics, Techniques, and Common Knowledge (ATT&CK®)
framework is described as ”techniques that involve adversaries
actively or passively gathering information that can be used
to support targeting [1].” As reconnaissance activities usually
precede an exploitation campaign, detection of these efforts
benefit cyber defenders by identifying potential targets (e.g.,
crown jewels) of interest. In this respect, adversarial recon
activities strive to maximize visibility of targets while mini-
mizing opportunities of being detected. Critical to this are the
identification of paths, termed SDR, traversed by adversaries
to gather critical data about targets (e.g., ports, protocols,
applications, services).

From a cyber protection standpoint, recon activities disguise
serious hostile intent but may be quite difficult to quantitatively
differentiate from normal behavior. Malicious intent is quite
difficult to observe, as it may be efficiently designed to hide
in the background of normal traffic. Detecting this type of
recon is situational in nature and requires meticulous analyses
of huge volumes of collected data. Other domains apart
from cyber are often challenged in a similar manner, where
evaluation of these SDR require data analysis to differentiate
abnormal traffic from events that are suspicious in proximity
to roads and crossings [2].

Modern efforts to detect and respond to adversarial network
reconnaissance are a complicated blend of automated and
human processes. Automated collection systems are installed
on network devices and endpoints to passively and actively
monitor the network communications, analyze the flow, and
aggregate the data for the Security Information Event Man-
agement (SIEM) and/or Security Orchestration, Automation
and Response (SOAR) systems for analysis. These network
tools assist the human component of detection by providing
automated security reports, incident alerts, and executing net-
work protection protocols with a single click from the security
operations center (SOC) analyst. The effectiveness of these
systems relies on the data collected, the knowledge of current
threat behavior, and the human analyst’s ability to understand
the threat. Naturally, such approaches have blindspots.

Combining the current security information (network topol-
ogy and configuration) with machine learning (ML) anal-
ysis allows highlighting weak points missed by automated
systems that an attacker may focus on during initial recon.
Network traffic behavior analysis, no matter how advanced,
relies on active network traffic and does not preempt net-
work/host/protocol mis-configurations. This paper contributes
a deep RL approach to generating SDR in the form of attack
graphs from network models consisting of network topology
and configuration, thereby extending the suite of automated
tools and systems available for the cyber defense.

In particular, an Markov decision process (MDP) formula-
tion and a new algorithm, SDR-RL, is proposed that uses a
warm-up phase and penalty scaling to control the asymmetry
between the number of host services scanned and the number
of defensive terrain encountered. This emulates the asym-
metry sought by human operators when conducting network
reconnaissance generally and SDR in particular. Additionally,
this paper extends the double agent architecture (DAA) of
Nguyen et al. [3], which originally used standard deep Q-
learning (DQN), with actor-critic (A2C) and proximal-policy
optimization (PPO) algorithms [4].

This paper is structured as follows. First, background on
RL and penetration testing is given. Then, the methods used
to expose SDR using RL, attack graphs, and cyber terrain

ar
X

iv
:2

21
1.

03
02

7v
1

 [
cs

.L
G

]
 6

 N
ov

 2
02

2

are presented. Next, experimental design for testing the pre-
sented methodology is given, including details regarding RL
implementation and training. Results are presented, and, before
concluding, an in depth discussion is given in terms of cyber-
specific outcomes.

II. RL AND PENETRATION TESTING

A. Reinforcement Learning Preliminaries

Reinforcement learning (RL) problems involve an agent,
interacting with an environment, and transiting from one state
to another until it reaches the goal state [5]. The agent
receives rewards for taking actions with the overall goal
to achieve maximum cumulative rewards. Environments are
normally modeled as MDPs, which can be defined by a tuple
{S,A,R, P, γ} where S denotes the set of possible states
and A denotes the set of possible actions, R represents the
distribution of reward given any state-action pair, P represents
transition probability and γ is discount factor. The goal of
the agent is to learn an optimal policy π that maps states
to actions. As so, the RL algorithm is to learn an optimal
policy to select actions and maximize the expected cumulative
discounted reward:

π∗ = argmax
π

E[
∑
t>0

γtrt|π]

with s0 ∼ p(s0), at ∼ π(·|s0), st+1 ∼ p(·|st, at)
(1)

In (deep) Q-learning, the optimal policy can be defined by
two terms, the value function and Q-value function. The value
function shows how good the state is and it is defined as the
expected cumulative reward from following the policy from
the state

V π(s) = E[
∑
t>0

γtrt|π] (2)

The Q-value function, on the other side, is defined as the
expected cumulative reward given both parts of the state-action
pair

Qπ(s, a) = E[
∑
t>0

γtrt|s0 = s, a0 = a, π] (3)

It satisfies the Bellman equation

Q∗(s, a) = Es ∼ ε[r + γmax
a′

Q∗(s′, a′)|s, a] (4)

Thus, the optimal policy π∗ corresponds to taking the best
action in any state as specified by Q∗.

For a more complex problem where the state or action
space is large enough so that computing every state-action
pair is infeasible, neural networks become a powerful function
estimator in deep Q-learning (DQL) [6], [7]. The optimal Q-
values are estimated by a neural network parameterized by
θ:

Q(s, a; θ) ≈ Q∗(s, a) (5)

where yi = Es′∼ε[r + γmaxa′ Q
∗(s′, a′; θi−1)|s, a]

During the backward pass, the gradients can be calculated
as

∇θiLi(θi) =
Es,a∼p(·);s∼ε[(r + γmax

a′
Q∗(s′, a′; θi−1)

−Q(s, a; θi))∇θiQ(s, a; θi)] (6)

B. The Penetration Testing Environment

Though RL has been pursued as a tool for penetration
testing recently, the approaches to model the network vary
significantly. Alternative methods to modeling penetration
testing including hypothesis generation, ontology-based, attack
trees and attack graphs. Hypothesis generation model [8] is an
organizational network presentation for cyber defense while
ontology-based models [9] focus more on the semantics of
penetration testing. However, neither of them contains any
structural information about the network itself. While both
attack trees [10] and attack graphs do provide structural rep-
resentation of the network, attack graphs are more generative
and attack trees are special cases of attack graphs. As a result,
attack graph are the most recognized method for the modeling
of penetration testing environment [11].

C. Related Work

The use of deep RL for attack graphs has seen recent
development. Other than Ghanem and Chen [12], the authors
in the RL for attack graphs literature use fully observable
MDPs to model networks. Many authors use the Common
Vulnerability Scoring System (CVSS) to furnish their MDPs
(CVSS-MDPs). Yousefi et al. provide the earliest work doing
so in deep RL for penetration testing [13]. Hu et al. extend
the use of the CVSS by proposing to use exploitability scores
weight rewards [14]. Gangupantulu et al. [15], [16] and Cody
et al. [17] explicitly extend the methods of Hu et al. with
concepts of terrain. Gangupantulu et al. advocate defining
models of terrain in terms of the rewards and transition
probabilities of MDPs, first in the case of firewalls as obstacles
[15], then in the case of lateral pivots nearby key terrain [16].
Cody et al. apply these concepts to exfiltration [17]. Other
authors either handcraft the MDP or do not remark on how
its components are estimated.

Many authors apply generic deep Q learning (DQN) [6], [7]
to solve point-to-point network traversal tasks [13]–[15], [18],
[19]. Typically the terminal state is unknown and solutions
take the form of individual paths. Others develop domain-
specific modifications for deep RL including the double agent
architecture [3], a hierarchical action decomposition approach
[20], and various improvements to DQN termed NDSPI-
DQN [21]. Another line of research focuses on developing
more specific penetration testing tasks. A number of authors
define more specific tasks by reward engineering and other
modifications to the MDP including formulations of capture
the flag [22], crown jewel analysis [16], and discovering
exfiltration paths [17]. This paper extends this line of research
with a methodology for exposing SDR.

III. METHODS

The following subsections describe the presented methods
for adding service-based risk penalties as defensive terrain in
CVSS-MDPs and the algorithm for discovering surveillance
paths in a network.

A. Defensive Terrain in CVSS-MDPs

Gangupantulu et al. [15] proposed that cyber terrain can be
modeled into CVSS-MDPs by adding transition probabilities
for traversing firewalls and negative rewards for different
protocols. Cody et al. [17] later modeled the services-based
defensive terrain in CVSS-MDPs based on the assumption that
the attackers can infer the presence of defenses terrain based
on the services running on a host. We adopt their methods
and classify the services into four categories: authentication,
data, security and common. Our reward hierarchy assigns -6
for authentication, -4 for data and -2 for security and common.
Moreover, the type of actions has an effect on the rewards. n+1
(-1, -3 and -5) is assigned for scanning action while n (-2, -4
and -6) is assigned for exploiting action.

B. Discovering Surveillance Paths with RL

In our surveillance detection routes (SDR) algorithm (Al-
gorithm 1), we have a target node of interest which we want
to explore all the services running on it. The goal of SDR is
to gain the service information of the target node along with
maximizing service information discovery along other areas
of the network while being cautious and not triggering any
defensive terrain area. We give a discovery reward of 100 to
the target node when all its service have been discovered. To
encourage the service discovery the agent receives a +1 reward
for each service discovered on a node. The algorithm is divided
into two phases - a warm-up phase and a training phase.

C. Warmup Phase

In the warmup phase, we want to update our goal for the
RL agent to not only gain information of just the target node
but also other nodes from where we receive positive reward
indicating that the defense terrain allows us to access this area.
The following steps are taken in the warmup phase:
• We define a certain number of episodes for warmup phase

in the training configuration.
• In the warmup episodes the RL agent does not learn (no

weight updates) but only monitors positive reward during
an episode.

• If the RL agent receives a positive reward from a scanning
action, then that node is added to the goal along with the
target node and its reward for compromise is set to 100.

• The algorithm allows only one node (which gives out the
maximum positive reward) from each subnet to be part
of the goal as gaining control of one node in a subnet is
enough to gain service information of the entire subnet.

At the end of the warmup phase, we have these dynamic
nodes along with the target node of which we must gain the
service information to reach the goal. The number of dynamic
nodes being a part of the goal decreases as the scale value

of defense terrain increases. Therefore, we limit the agent’s
exploration capability as we increase the scale value of defense
terrain.

D. Training Phase

In the training phase, the agent interacts with network in
an episodic fashion to learn which is the best possible path
to gain service information of all the target nodes identified
during the warmup phase.

E. Scalability

Conventionally, DQN is the most basic algorithm used for
modeling RL on penetration testing. Nguyen at al. proposed a
method that utilizes two A2C agents: one called the structural
agent that learns the structural information about subnets,
hosts and firewalls as well as the connections between them.
The other called the exploiting agent selects actions to take
and the target of them. Their method solves the scalability
problem of DQN to some extent and has a better capacity for
large networks. We improve upon this method by applying
proximal policy optimization (PPO) instead of A2C for both
of the agents. PPO is an advanced RL algorithm known
for its convergence speed, stability and sample efficiency. It
optimizes the following clipped surrogate objective function to
prevent performance collapse caused by a large policy update:

L(θ) = E
[
min

(
ρt(θ)At, clip

(
ρt(θ), 1− ε, 1 + ε

)
At
)]
, (7)

where ρt(θ) = πθ(at|st)/πθold(at|st) is the probability ratio
of the new policy over the old policy. The advantage function
At is often estimated using the generalized advantage estima-
tion [23], truncated after T steps:

At ≈ δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (8)
where δt = rt + γV (st+1)− V (st). (9)

IV. EXPERIMENTAL DESIGN

In the following subsections the network, state-action space,
and RL algorithm implementation are described.

A. Network Description

The same network framework as in Cody et al [17] is used
for our experiment but with different configurations in defense
mechanism. To simulate real-world network conditions, there
are layers of defenses between the Internet and the innermost
private network. Systems that require Internet to provide
service (HTTP, email) are most vulnerable to attack; and are
typically in the Demilitarized Zone (DMZ) with limited access
to private network resources. The private, internal networks are
separated from the DMZ with firewalls that apply rules that
only allow connections to specific internal servers/services.
VPN services to the internal network is protected with VPN
Management Firewalls that apply network rules allowing only
authorized and authenticated user traffic to traverse internally
over an encrypted connection. Internal network subnets are
separated based on access rules and allow traffic to egress
to the Internet if it is authorized, as well as applying rules

Algorithm 1: SDR via RL (SDR-RL)
input : MDP M, initial node i, set of target nodes J ,

number of warmup episode Nw, RL algorithm
fRL :M× i× J → path

output: SDR that includes initial and target nodes

for n in range(Nw) do
for each subnet MS in M do

for each node j in MS do
if rewardj > 0 then

dynamic nodes←
dynamic nodes ∪ J

end
end
if dynamic nodes 6= ∅ then

J ← max(dynamic nodes) ∪ J
end

end
end

path← fRL(M, i, J);

return paths

for network traversal between subnets. Finally, access to the
innermost subnet is controlled by a firewall that allows only
authorized traffic in or out, and only to specific hosts.

These security controls were known and applied by the
designers but were intentionally left unknown to the model
to provide an accurate simulation of an attacker exploring an
unknown network environment.

B. Environment Description

The hosts are each represented as an 1D vector that encodes
its status (compromised, reachable, discovered or not) and
configurations (address, services, OS and processes). Next, our
environment combines all vectors of hosts in the network as
a entire state tensor. Our action space contains 6 primitive
actions for scanning, exploiting and privilege escalation.

For these experiments, the initial host is set at (1, 0) while
the terminal host is set as (3, 1), (8, 2) or (9, 2). Here, the host
(x, y) refers to the host indexed by y in subnet x. The initial
host is compromised, reachable and discovered by default so
that it allows the agent to perform further exploration, thus
the simulation assumes the attacker already has gained this
foothold in the network. The goal of SDR is to explore all the
services of the target host. And a high positive reward (100)
is assigned if the goal is reached.

C. RL Implementation

The experiment is conducted on the single-agent A2C model
and two variants of the double agent (DA) architecture [3]. In
the original double agent model, DA-A2C, both the structuring
and the exploiting agents are trained using the A2C algorithm.
To achieve better sample efficiency and training stability, we
combine the PPO algorithm [4] with the DA architecture and
build a DA-PPO model, where both RL agents are trained

using PPO. We use Adam as the optimizer of our network. The
A2C model is trained for 4000 episodes and the two double
agent models are trained for 8000 episodes with a maximum
of 3000 steps in each episode. The episode terminates either
when the goal is reached or when the step limit is reached.
Both the A2C model and the structuring agent of the DA
models use deep neural networks (DNNs) with three fully
connected layers of 64, 32 and 1 and the exploiting agent
of the DA models use a DNN with two fully connected layers
of size 10 and 1. All DNNs use tanh activation functions for
non-output layers and softmax for the output layer.

D. Sensitivity analysis

We train the A2C, DA-A2C, DA-PPO to convergence. Our
surveillance detection algorithm is run on four different scales
values namely 1, 3, 5 and 11 for host (9,2) (8,2), and (3,1).
For host (9,2) and (8,2) we run an extra scale of 15. The scale
values were experimental in nature and each scale defines a
certain drop in exploration of the network. When the scale
value increases, the agent becomes more risk-averse and thus
keeps on reducing the amount of exploration.

V. RESULTS

The model convergence is showcased by plotting the steps
and reward versus episodes and results are shown in Figure 1.

As can be seen from Figure 2, DA-PPO trains significantly
faster than DA-A2C on all five penalty scales, both in terms
of wall-time and number of episodes. Specifically, DA-PPO
converges in less than ten minutes as compared to more than
30 minutes by DA-A2C (Figure 2a), and it requires much
fewer episodes to learn an effective policy (Figure 2b).

The DAA modeling highlights a pattern that showed the
expected path being taken at all the penalty scales for all the
three different target host, minimizing the number of defenses
crossed. While the path converges by taking a relative higher
number of episodes, it thus offers higher scalability while
applying it to real world use cases with larger networks.
Across the models, it is observed that as the penalty keeps
on increasing the agent reduces the amount of exploration and
only explored areas which are deemed to be safe. The simpler
A2C model followed the expected path being taken in penalty
scale of 1, 11 and 15 for three different target host. However,
for scale of 3 and 5 in target host of (3,1), the A2C Model
takes a potential imperfect path which expose to a higher risk;
this suggests that even for a small test network of this size, a
simpler agent scheme fails to find realistic paths.

VI. DISCUSSION

We can observe the paths taken by the agent to achieve the
SDR goal when target hosts are (8,2) and (3,1) for penalty
scales 1, 3 and 11 in Fig 3. In Table 1, we can observe that as
we are adjusting the scale factor the number of services being
explored drops off. Furthermore, the number of high penalty
host controlled goes down from 2 to 1 as we scaled the penalty
showcasing that the agent becomes more risk averse.

Fig. 1: Training performance of DAA and A2C agent with different penalty scales: (a) episode-reward of A2C agent; (b)
episode-step of A2C agent; (c) episode-reward of DAA agent and (d) episode-step of DAA agent.

Target Host Scale Factor Services High
Penalty Host

Medium
Penalty Host

Low
Penalty Host

(3, 1)

1 207 2 0 4
3 166 1 0 4
5 102 1 0 1

11 72 1 0 1

(8, 2)

1 207 2 0 4
3 166 1 0 4
5 134 1 1 2

11 104 1 0 2

(9, 2)

1 207 2 0 4
3 166 1 0 4
5 134 1 0 2

11 104 1 0 1

TABLE I: Table of the number of services and hosts explored with different target hosts and scale factors.

For penalty scale 1, the agent takes a path which according
to the environment and penalty is acceptable as in its explo-
ration of network it is taking control of hosts which are either
low or medium risk except one high penalty host (i.e., (4,0))
which is a necessity as to reach the goal at least one high-risk
host needs to be controlled. Therefore, the path taken by the
agent for a low penalty of 1 is acceptable.

For penalty scale 3, when the target is (8,2) the agent takes
an acceptable path according to the environment and penalty
as it takes control of only low penalty host except one high

penalty host (i.e., (4,0)) which is again a necessity to explore
services on the target host. However, when the target host is
(3,1), the agent takes a path which is less acceptable according
to the environment and penalty as it takes control of two high
penalty node (i.e., (4,0) and (3,0)) where only one was required
to achieve the goal. The agent had an option to select (3,2)
which is a lower penalty host than (3,0).

For penalty scale 11, the agent takes a path which is
acceptable according the state and penalty of the environment
and takes control of host which are low risk apart from only

(a) (b)

Fig. 2: Training performance of DA-A2C and DA-PPO with different penalty scales. The left plot shows the total rewards in
an episode as training time increases. The right plot shows the total number of steps in each training episode.

one high risk host which is unavoidable in achieving the goal.
Associating penalty scores (low to high) to the risk adversity

of human actors demonstrates that the agent performs actions
that are reasonably in line with expected human advisory
behavior.

Actors operating in a condensed timeline, commonly re-
ferred as “smash and grab” operations, or actors without
sufficient experience, would be examples of an agent set with
a Penalty Scale of 1.0. Nation-State actors, highly-competent
APTs (Advanced Persistent Threats), and experienced actors
with more time to observe and a higher cost of getting caught
would be representative of an agent with a penalty scale of
11.0.

When risk adversity is low, an actor is not worried about
performing “noisy” scans. These scans will include enumera-
tion of multiple network services or simultaneously traversing
multiple network segments (with each new segment potentially
having deeper layers of defense incorporated into it). As
observed when the penalty score is set to one (1.0), the
agent finds and explores paths that would involve a higher
level of risk of getting caught and a lower sensitivity to
negative consequences. These actions involve scanning or
traversing paths with a reasonable presumption of greater
security and more rigorously logged and monitored network
devices, such as VPNs and Firewalls (FW) (High Risk Hosts)
as well as enumerating networks not directly associated with
the respective target. The risk-accepting paths also explored
several networks unnecessarily and utilize multiple services
along the way. Each service to be used and/or exploited along
the way creates another risk and/or protection system that
may be in place, thus increasing the log presence and actor
footprint. (As stated above, it is presumed that firewalls are
monitored at a higher rate, and that security services have the
most inherited controls.) While exploitation of these devices

yields great impact, the associated risk is also higher. This
risky behavior is reflected by the agent as seen in Table 1
with the larger number of services and high penalty hosts
being exploited, as well as represented by the paths chosen
in Figure 3.

When risk adversity is high, the cost of getting caught
outweighs the reward of network discovery, so actors, and as
observed, the agent, take the most direct path possible. Risk
adverse actors naturally choose paths that avoid traversing
multiple protocols/services and presumed increased security
controls. This lowers the log footprint and network noise
generated and reduces the chances of detection. The agent’s
behavior of only taking control of one high risk host to reach
the lower target reflects the lowest risk path that an advisory
would naturally gravitate to.

VII. CONCLUSION

In this work, we provide a RL realization of automating
analysis methods for SDR. Our approach introduces a warm-
up phase to perform pre-exploration emulating an experienced
actors necessity to find the “safe” areas of a network. The
capability and efficiency of our methods are validated by
simulations on a custom network configured with defense
mechanisms (simulated cyber range).

The model ran on a network created to simulate the realistic
placement of layered network defenses with increasing secu-
rity controls as an actor draws closer to the most sensitive
information and services. As the model was faced with penal-
ties that increased when transitioning into more secure zones,
the effect of the penalty score became more demonstrative.
This activity mirrors the expected risk sensitivity of an actor
mirroring the risk profile of the model’s penalty score. A more
risk/penalty adverse model showed significantly more concise
paths to reach the goal, while the less risk-adverse model

Fig. 3: Network diagram showing the SDR to different target nodes for various penalty scale factors: host (3,1) for the first
row and (8,2) for the second row. The nodes in green indicates the hosts whose service information is available while the
information of nodes in red is not. The nodes in purple are set as initial nodes while the nodes in yellow are set as target
nodes.

explored around and left more of a footprint on the defense
system’s logs.

In future work, we expect to run this model on a live
network utilizing both internal and external network data.
Incorporating internal and external scan information allows
for a model that most-closely mimics a malicious actor and
defensive expectations for their actions. Using live data for
a production network should also create greater granularity
for the penalty scoring as vulnerability data for CVSS3 and
weakness data for associated Common Weakness Enumeration
(CWE) can be incorporated.

REFERENCES

[1] (2021) Mitre att&ck framework®. [Online]. Available: https://attack.
mitre.org

[2] R. Schoemaker, R. Sandbrink, and G. van Voorthuijsen, “Intelligent route
surveillance,” in Unattended Ground, Sea, and Air Sensor Technologies
and Applications XI, E. M. Carapezza, Ed., vol. 7333, International
Society for Optics and Photonics. SPIE, 2009, pp. 83–90.

[3] H. V. Nguyen, S. Teerakanok, A. Inomata, and T. Uehara, “The proposal
of double agent architecture using actor-critic algorithm for penetration
testing.” in ICISSP, 2021, pp. 440–449.

[4] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[8] C. Weissman, “Penetration testing,” Information security: An integrated
collection of essays, vol. 6, pp. 269–296, 1995.

[9] G. Chu and A. Lisitsa, “Ontology-based automation of penetration
testing.” in ICISSP, 2020, pp. 713–720.

[10] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp.
21–29, 1999.

[11] T. Cody, “A layered reference model for penetration testing with rein-
forcement learning and attack graphs,” arXiv preprint arXiv:2206.06934,
2022.

[12] M. C. Ghanem and T. M. Chen, “Reinforcement learning for efficient
network penetration testing,” Information, vol. 11, no. 1, p. 6, 2020.

[13] M. Yousefi, N. Mtetwa, Y. Zhang, and H. Tianfield, “A reinforcement
learning approach for attack graph analysis,” in 2018 17th IEEE In-
ternational Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). IEEE, 2018, pp. 212–
217.

[14] Z. Hu, R. Beuran, and Y. Tan, “Automated penetration testing using
deep reinforcement learning,” in 2020 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, 2020, pp. 2–10.

[15] R. Gangupantulu, T. Cody, P. Park, A. Rahman, L. Eisenbeiser,
D. Radke, and R. Clark, “Using cyber terrain in reinforcement learning
for penetration testing,” Submitted ACM ASIACCS 2022, 2021.

[16] R. Gangupantulu, T. Cody, A. Rahman, C. Redino, R. Clark, and
P. Park, “Crown jewels analysis using reinforcement learning with attack
graphs,” arXiv preprint arXiv:2108.09358, 2021.

[17] T. Cody, A. Rahman, C. Redino, L. Huang, R. Clark, A. Kakkar,
D. Kushwaha, P. Park, P. Beling, and E. Bowen, “Discovering exfiltration
paths using reinforcement learning with attack graphs,” arXiv preprint
arXiv:2201.12416, 2022.

[18] J. Schwartz and H. Kurniawati, “Autonomous penetration testing using
reinforcement learning,” arXiv preprint arXiv:1905.05965, 2019.

[19] A. Chowdhary, D. Huang, J. S. Mahendran, D. Romo, Y. Deng, and
A. Sabur, “Autonomous security analysis and penetration testing,” in
2020 16th International Conference on Mobility, Sensing and Network-
ing (MSN). IEEE, 2020, pp. 508–515.

[20] K. Tran, A. Akella, M. Standen, J. Kim, D. Bowman, T. Richer, and C.-T.
Lin, “Deep hierarchical reinforcement agents for automated penetration
testing,” arXiv preprint arXiv:2109.06449, 2021.

[21] S. Zhou, J. Liu, D. Hou, X. Zhong, and Y. Zhang, “Autonomous pen-
etration testing based on improved deep q-network,” Applied Sciences,
vol. 11, no. 19, p. 8823, 2021.

https://attack.mitre.org
https://attack.mitre.org

[22] F. M. Zennaro and L. Erdodi, “Modeling penetration testing with
reinforcement learning using capture-the-flag challenges: trade-offs be-
tween model-free learning and a priori knowledge,” arXiv preprint
arXiv:2005.12632, 2020.

[23] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

	I Introduction
	II RL and Penetration Testing
	II-A Reinforcement Learning Preliminaries
	II-B The Penetration Testing Environment
	II-C Related Work

	III Methods
	III-A Defensive Terrain in CVSS-MDPs
	III-B Discovering Surveillance Paths with RL
	III-C Warmup Phase
	III-D Training Phase
	III-E Scalability

	IV Experimental Design
	IV-A Network Description
	IV-B Environment Description
	IV-C RL Implementation
	IV-D Sensitivity analysis

	V Results
	VI Discussion
	VII Conclusion
	References

