
A NOVEL APPROACH TO USER AGENT STRING PARSING FOR
VULNERABILITY ANALYSIS USING MULTI-HEADED ATTENTION

DHRUV NANDAKUMAR, SATHVIK MURLI, ANKUR KHOSLA, KEVIN CHOI,
ABDUL RAHMAN, DREW WALSH, SCOTT RIEDE, ERIC DULL, EDWARD BOWEN

Deloitte & Touche LLP
E-MAIL: kevchoi@deloitte.com

Abstract:
The increasing reliance on the internet has led to the prolif-

eration of a diverse set of web-browsers and operating systems
(OSs) capable of browsing the web. User agent strings (UASs) are
a component of web browsing that are transmitted with every Hy-
pertext Transfer Protocol (HTTP) request. They contain informa-
tion about the client device and software, which is used by web
servers for various purposes such as content negotiation and secu-
rity. However, due to the proliferation of various browsers and de-
vices, parsing UASs is a non-trivial task due to a lack of standard-
ization of UAS formats. Current rules-based approaches are often
brittle and can fail when encountering such non-standard formats.
In this work, a novel methodology for parsing UASs using Multi-
Headed Attention Based transformers is proposed. The proposed
methodology exhibits strong performance in parsing a variety of
UASs with differing formats. Furthermore, a framework to utilize
parsed UASs to estimate the vulnerability scores for large sections
of publicly visible IT networks or regions is also discussed. The
methodology present here can also be easily extended or deployed
for real-time parsing of logs in enterprise settings.

Keywords:
User Agent String; Natural Language Processing; Parsing;

Transformer

1. Introduction

The increasing reliance on the internet has led to the pro-
liferation of a diverse set of web-browsers and operating sys-
tems (OSs) capable of browsing the web. Each of these soft-
ware packages is versioned separately and has separate security
vulnerabilities as an artifact of their design. The vulnerabili-
ties have the potential to be exploited by malicious actors as a
method for data theft, network intrusion, or a variety of other
tasks.

User agent strings (UASs) are a component of web brows-
ing that are transmitted with every Hypertext Transfer Protocol
(HTTP) request. They contain information about the client de-
vice and software, which is used by web servers for various
purposes such as content negotiation and security. UASs con-
tain information pertaining the names and versions of OS, web
browser, hardware, and software components used by a client
device. This information can be used to assess the vulnerabil-
ities of devices by correlating the extracted information with
known Common Vulnerabilities and Exposures (CVEs). These
vulnerabilities can then be quantified using the Common Vul-
nerability Scoring System (CVSS) scores which represent the
severity of a vulnerability [1]. If done at a larger scale, CVSS
scores can be aggregated at regional levels to estimate the vul-
nerability and security levels of large portions of the public in-
ternet.

However, the format of UASs is not standardized and can
vary greatly, making it difficult to parse and interpret their con-
tents accurately. This can have significant implications for web
security, as incorrect information can lead to incorrect decisions
being made by web servers, such as serving content that is not
compatible with the client device, or failing to properly secure
the connection. Furthermore, inaccurate parsing of UASs could
significantly impact the estimation of CVSS scores at the de-
vice level as CVEs and CVSS scores are heavily reliant on the
names and versions of browsers and OSs.

Conventional methods for parsing UASs typically rely on
rules-based approaches, where regular expressions or heuristics
are used to extract relevant security information. While these
methods can be effective for well-formed UASs, they are often
brittle and can fail when encountering strings with unexpected
or non-standard formats. This can lead to incorrect information
being extracted or in many cases, not extracted at all.

In this paper, we propose a novel approach for parsing UASs

ar
X

iv
:2

30
6.

03
73

3v
1

 [
cs

.C
R

]
 6

 J
un

 2
02

3

using transformer-based natural language processing (NLP)
techniques. Our method is designed to be robust and capable
of handling a wide range of UAS formats, while accurately ex-
tracting information about the client device and software. Fur-
thermore, we also introduce a methodology for estimating the
vulnerability of large sections of public internet by correlating
UAS information to CVEs.

The key contributions of this paper are two-fold:

• A robust method for parsing UASs using transformer-
based NLP techniques, which overcomes the limitations
of traditional rules-based methods.

• The use of extracted fields from the parsing process to as-
sess the vulnerabilities of large portions of the internet by
correlating the extracted information with known CVEs,
which can help to identify potential security risks and in-
form mitigation strategies.

The accuracy and reliability of UAS parsing is critical for en-
suring the security and stability of the internet. By leveraging
the information contained in UASs to identify vulnerabilities
in networks, our approach has the potential to significantly im-
prove the current state and provide valuable insights into the
security of the internet.

2. Related Work

UASs have been used extensively to provide content distri-
bution and web servers with the information required for said
servers to provide optimal web content. Since the advent of
UASs, there has been significant progress in their standardiza-
tion from a browser perspective. Several browsers and orga-
nizations have defined protocols and issued guidance on stan-
dardizing UAS formats including measures to shorten UASs
and omit non-essential or personally identifiable fields. How-
ever, there does not yet exist a universally standardized UAS
format. There are several cases when a browser cookie adds
its own information in the UAS, or UASs originating from in-
app browsers consisting of multiple software names. These
cases introduce significant variability to UAS formats which
weaken rules-based approaches to UAS parsing; thus, justify-
ing the need for the development of more robust methods.

There has been work completed on data relating UASs in
similar fashion to the solution proposed in this paper. Crucially
however, the scopes of work, methodologies used, and result-
ing outputs differ from ours. For example, work has been com-
pleted using pre-processing methods related to NLP in the past.
Zhange et al. [2] used context-free grammars to distinguish fake
UASs from real ones. Want et al. [3] converted HTTP flow

headers into N-gram sequences to obtain a bag-of-words rep-
resentation. This resulting representation was then fed into a
support vector machine to identify malicious network traffic.
Tanaka et al. [4] implemented a similar bag-of-words represen-
tation, but they used logistic regression, and a tree-based model
called Light Gradient-Boosting Machine (LightGBM) [5].

UASs have been core source of information where the aim is
to detect malicious activities using user logs. The notion of all
these works is to extract information from the UAS, encode this
information using rule-based techniques and perform statistical
analysis on the generated features. For example, Chen et al. [6]
used regex on UASs to detect anomalous user agents in network
traffic. Boda et al. [7] described a structure that the majority of
UASs they collected follow and leveraged that information for
browser fingerprinting. Grill et al. [8] divided UASs based on
different types, for example legitimate UA, spoofed, empty, etc.
Statistical analysis was performed post classification. Lewis et
al. [9] also uses rule-based approach for parsing, taking into
account the defined HTTP structure of UAS. Rule-based ap-
proaches have been quite prevalent in this domain.

However, multiple works have used NLP-related models on
entire HTTP requests to discriminate between malicious and
benign traffic. Attempts have been made to perform character
level encoding (e.g., 0 for vocabulary characters, 1 for numeric
values, etc.) to identify patterns and correlation among multi-
ple UASs. Gao et al. [10] used this approach along with sta-
tus code, content length and referrer as feature vectors. Post
feature extraction, clustering algorithms were used to iden-
tify malicious users. Zolotukhin et al. [11] used an N-gram
model to extract features from UAS, followed by mathemat-
ical modeling and Principal Component Analysis (PCA) [12]
combined with Support Vector Data Distribution (SVDD) [13],
K-means [14], Density-based spatial clustering of applications
with noise (DBSCAN) [15] and aggregated time bin for analy-
sis. Rong et al. [16] used a character-level convolutional neu-
ral network, which is a convolutional neural network operat-
ing on character-level embeddings of HTTP requests. Park et
al. [17] used a similar method, feeding character-level embed-
dings into an auto-encoder. Gniewkowski et al. [18] leveraged
byte-pair tokenization to generate inputs that were then fed into
the transformer-based model, a Robustly Optimized BERT Pre-
training Approach (RoBERTa) [19]. A key characteristic of
these works is they do not extract individual pieces of informa-
tion from the UASs, but process them as part of a larger feature
set.

The collective nature of UAS analysis has resulted in reduced
focus towards feature extraction from independent UASs. The
majority of prior work revolved around identifying patterns

from a collection of UASs / web logs. However, in this pa-
per we focus on UAS at rudimentary level to extract features
and present threat correlation as an extended use case of this
approach. The objectives of our work are to present a founda-
tional approach to UAS parsing and usage in enterprise security
and IT settings.

3. Problem Setup

In order to build a more robust UAS parser, we propose the
use of NLP techniques including Multi-Headed Attention. The
scope of our modeling efforts are limited to parsing 4 specific
pieces of information from a UAS, although we believe that this
methodology can be extended to most other parts of a UAS.
Particularly, we focus on extracting:

• OS Name and Version

• Browser (Software) Name and Version

In the following subsections, we explore the structure of our
training and validation data, our model architectures, and ex-
perimental setup.

3.1. Data and Pre-processing

Our training dataset consists of over 200 million public
UASs collected by WhatIsMyBrowser.com [20]. Each UAS
in the dataset was labelled with Software and OS names and
versions, along with several other pieces of UAS metadata. We
treat this dataset as a labelled dataset with ground truth being
the labels assigned by the issuing entity.

We pre-processed each UAS to remove special characters,
parentheses, remnants of HTML and to standardize whitepsace
by performing the substitutions referenced in Table 1. Further-
more, we also limited the length of a UAS to 50 words after
preprocessing, wherein any UAS longer than 50 words would
be truncated at length 50.

From the pre-processed data, a balanced training dataset was
curated for software name and OS name classification. There
were a total of 7 classes in each of the Software and OS names.
(Software names – Android WebView, Chrome, Facebook App,
Internet Explorer, Instagram, Opera, and N/A. OS names – An-
droid, iPad, iOS, Linux, Macintosh, Windows, and N/A). These
(top 6) classes were selected based on their popularity among
200M examples. ‘N/A’ class denotes that the UAS belonged
to none of the above six classes. For software name classifi-
cation and version identification models, each class had 1.4M
randomly sampled examples, making the total size of training

TABLE 1. Character edits made to format the UASs.

Original Character Replacement
“%20” “ ”
“ ” “.”
“\(” “(”
“\)” “) ”
“/” “ ”
“;” Removed
“:” “ : ”
“%” “ ”

data almost 9.8M. For OS name classification and version iden-
tification models each class had 2M examples and 500k for N/A
class, making the total training dataset size as 12.5M.

3.2. Modeling Considerations and Architectures

In order to parse OS and Software names and versions from
UASs, we leverage 4 independent models - one for each task.

Parsing of OS and Software version numbers is treated as a
part of speech (PoS) tagging problem wherein two independent
models are trained to output a likelihood of each word in a UAS
corresponding to the versions of the OS and Software respec-
tively. Conversely, due to the fact the OS and Software names
are often not explicitly stated in UASs, we treat their parsing as
a classification problem where two models are trained to clas-
sify the names of the target fields using the entire UAS as con-
text respectively.

Each of the four models consist of the following three com-
ponents:

3.2.1. UAS Embeddings

Given that the content of UASs are domain specific, we can-
not use pre-existing tokenizers and embedding models to pro-
duce vector embeddings of UASs. Furthermore, we also want
to leverage information about character substrings in words of
a UAS. For example, we want to capture the similarity between
the strings Mac and Macintosh rather than treat them as sepa-
rate words and tokens. Consequently, we utilize Fasttext [21]
embeddings trained on a corpus of UASs to represent each
word in a UAS as a vector. The Fasttext model is trained using
a Continuous Bag Of Words (CBOW) approach and produces
a 1-dimensional vector of length 40 per word in a UAS, where
a word is any character sequences separated by a space after

(a) (b)

FIGURE 1. Model architectures for (a) classification of software name and OS name (b) predicting location of software version and OS version

preprocessing a UAS. Consequently, each UAS will be repre-
sented by a vector with length 50 and width 40 after passing
through the embedding layer.

3.2.2. Representation Layer

Each of the four models share the same architecture at this
layer. Embeddings from the UAS Embedding layer are passed
through a positional encoding layer followed by a single trans-
former encoder layer with two attention heads. A positional
encoding layer is used in attention-based neural networks to
convey the positional information that would not normally be
captured by a transformer-based network [22]. Our positional
encoding layer is defined by the following function:

PE(pos,2i) = sin(pos/100002i/dmodel) (1)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2)

In which dmodel refers to the length of the generated word
embeddings and i refers to the row upon which the operation
is being performed. pos refers to the position within each row
or sequence that is being passed through the layer. The output
of this layer is flattened into a one dimensional vector of length
2000 (from flattening a 50 x 40 vector).

3.2.3. Task Specific Heads

Both the OS and Software name classification heads consist
of fully connected dense layers. They are terminated by layers
of seven nodes, six of which are for specific classes and the

seventh signifying an ’N/A’ class. The output of the terminal
layers are passed through a softmax function. The PoS models
for version identification also feature fully connected layers but
are terminated by a layer with 51 nodes; one for each word in
the UAS and another indicating the version was not present in
the UAS. The fully connected layers are separated by SeLU
activation functions. During the training process, there are also
dropout layers that follow the first 3 fully connected layers to
combat the risk of overfitting. The overall architecture for each
of the models is represented in Figure 1.

3.3. Experimental Setup

Throughout the experiments in this paper, we utilized a
70%/30% training and validation split of the data where classes
were sampled using Random Stratified Sampling to have appro-
priate representation in both training and validation data. We
also utilized a fixed batch size of 200 UASs per batch for each
of the experiments in this work.

3.3.1. Version Indexing models

The optimizer used in the case of Version Indexing models
was Stochastic Gradiatent Descent (SGD) with a learning rate
of 0.005 and weight decay of 0.00001. The model was trained
using a Cross Entropy loss function. The word at the index with
the highest raw value was selected as the version.

3.3.2. Name Classification models

Here, we utilized the SGD optimizer with a learning rate of
0.0005 and weight decay of 0.00001 and a Binary Cross En-
tropy loss function. A softmax activation function was used in
the last layer to compute the probability scores of each class.
Class with highest probability was selected as the final output.

3.4. Post Processing

After extraction of the relevant fields from a UAS, our ob-
jective is to perform vulnerability analysis on the Classless
Inter-Domain Routing (CIDR) ranges from which the UASs
originate. We monitor the UASs originating from a particu-
lar CIDR range. Once we extract system information (Soft-
ware and OS) from the UAS, we then estimate a vulnerability
score for that particular UAS. For this purpose, we use National
Vulnerability Database (NVD: https://nvd.nist.gov/). NVD is a
database, maintained by U.S. government, where Subject Mat-
ter Resources (SMRs) analyze the vulnerabilities, based on pre-
defined metrics and score them on a scale of 1-10 (10 being
highly vulnerable). Although there are mix of old and new
scoring systems, such as v2.0 and v3.1, we consider the latest
available scores for each vulnerability.

These scores can be computed using CVSS. Upon analyz-
ing several factors, such as attack vectors and attack complex-
ity, CVSS computes a score based on base, temporal and en-
vironmental metrics (https://nvd.nist.gov/vuln-metrics/cvss/v3-
calculator). There are three types of scores provided for each
vulnerability – Base Score, Exploitability Score and Impact
Score.

To map the system information with existing vulnerabil-
ities, we use Common Platform Enumeration (CPE) names
(https://nvd.nist.gov/products/cpe). For a single UAS, each of
the CPE names and their vulnerability scores are computed
using the four-tuple (OS Name, OS Version, Software Name,
Software Version). To estimate the vulnerability of a UAS, we
compute the mean CVSS score for that UAS accross all known
CVEs. This process is conducted for an average Base Score,
Impact Score, and Exploitability Score. The averages are given
by the equations:

V ul(base uas) =
1

n

n∑
i=i

CV SSbasei (3)

V ul(exploit uas) =
1

n

n∑
i=i

CV SSexploiti (4)

V ul(impact uas) =
1

n

n∑
i=i

CV SSimpacti (5)

Where
CV SSX i

represents the CVSS score for the Base, Exploitability, or Im-
pact score for the ith CPE and n is the total number of CPEs
identified for a UAS.

Once we have the vulnerability scores corresponding to each
UAS, we map these scores back to the CIDR ranges. This score
distribution is analyzed for each CIDR range to estimate the ex-
posure of the endpoints / systems in that network. We can visu-
alize this vulnerability score distribution against the geographi-
cal locations to gauge the exposure on the map. Another way is
to analyze this distribution dynamically and visualize how the
exposure of a particular CIDR range changes over time. The
workflow for the aforementioned vulnerability estimation pro-
cess is presented in Figure 2. NVD Application Programming
Interfaces (APIs) were used for CVE Vulnerability Listing and
CVSS Vulnerability Scoring.

4. Results

Our approach has shown strong results on the 4 tasks we use
for evaluation. For the tasks structured as classification prob-
lems, accuracy, precision, recall and f1-scores were generated.
For the tasks involving location of version numbers, accuracy
is the measure of choice.

4.1. Name Classification Results

Tables 3 and 4 show the accuracy, precision, and recall of
our approach on classification of both OS names and software
names. The support column describes the number of rows
within the validation set that correspond to each respective
class. The results show the model performance is very high
on previously unseen data, with the models able to accurately
classify strings based on which OS name or browser name they
have. Further evaluation runs of the models show their abil-
ity to detect strings in which the OS name may be in varying
positions or represented as abbreviations or acronyms. Exam-
ples of these types of situations are displayed in Table 2. A
yellow highlight indicates a false indicator, a green highlight
indicates the correct answer. The correct answers our model
classifies are Android and Facebook respectively. The results
also show performance does suffer on strings corresponding to
Linux OSs, due to its overlap with certain other less frequently

FIGURE 2. Vulnerability Estimation Workflow

TABLE 2. Examples of our model’s ability to differentiate between false indicators and the correct answer. A yellow highlight indicates a false indicator, a
green highlight indicates the correct answer. The correct answers our model detects are Facebook and Android, respectively.

UAS False
Indicator
(Shown in
Yellow)

Correct
Indicator
(Shown in

Green)

Generated
Answer

Mozilla 5.0 (Linux Android 12 M2101K9AG Build SKQ1.210908.001 wv)
AppleWebKit 537.36 (KHTML, like Gecko) Version 4.0 Chrome 104.0.5112.97

Mobile Safari 537.36 5bFB.IAB Orca-AndroidFBAV 377.0.0.13.101 5d

Chrome 5bFB.IAB,
FBAV

Facebook

Mozilla 5.0 (Linux Andr0id 10 BRAVIA 4K VH2) AppleWebKit 537.36 (
KHTML, like Gecko) Chrome 84.0.4147.125 Safari 537.36 OPR 46.0.2207.0 OMI

4.21.0.273.DIA6.142

Linux Andr0id Android

encountered OSs that were also UNIX based. Android would
be an example of such an OS, but Android OSs were strongly
represented in the training data. The results show no such is-
sues with software name classification, which has consistent
performance across the 6 most frequently encountered classes.

TABLE 3. Classification of Software Names

Class Name Precision Recall F1 Score Support
Facebook 1.00 1.00 1.00 285551
Instagram 1.00 1.00 1.00 286175
Chrome 0.98 0.98 0.98 285615
Android Webview 0.97 0.99 0.98 283844
Internet Explorer 0.99 1.00 1.00 285320
Opera 1.00 1.00 1.00 282903
N/A 0.98 0.95 0.97 284192

TABLE 4. Classification of OS Names

Class Name Precision Recall F1 Score Support
Android 1.00 1.00 1.00 7038987
iOS 0.99 1.00 1.00 1281009
Windows 0.98 0.98 0.98 1006057
Macintosh 0.96 0.90 0.93 115541
Linux 0.99 0.87 0.92 116444
iPad 0.98 0.95 0.97 181760
N/A 0.87 0.91 0.89 121438

4.2 Version Indexing Results

For evaluation of version number identification models, ac-
curacy is our primary measure. Table 5 shows the model per-
formance on both the version number identification tasks. The
models have strong accuracy for detecting both kinds of version
numbers. Table 6 displays certain OS version numbers that had

TABLE 5. Version Number Indexing Results

Task Overall Accuracy
Software Version Number 99.4%
OS Version Number 99.5%

TABLE 6. Version Number Indexing Examples

Version Number Precision Recall F1 Score Support
2022060972 0.996 0.99 0.993 1732
21.113 0.948 0.998 0.973 2341
12.4.6 0.998 1.000 0.999 3215
10.0 1.000 1.000 1.000 424575

lower occurrences in the testing set but were still detected by
the model. The final row in the table shows the version num-
ber with the most occurrences in the testing set for reference.
These results display the potential for the models to identify
version numbers in varying scenarios and formats. Thus the
model shows very strong coverage for different software types
and OSs.

4.3. Vulnerability Visualization

Table 7 shows the Vulnerability Scoring system for a few
examples in our data. Six UASs are mentioned for two CIDR
ranges. Software name and OS information is extracted from
these UASs, and a base vulnerability score is computed for each
UAS accordingly. The Avg. Base Score column represents av-
erage of all the base scores corresponding to a particular CIDR
range. Furthermore, the CIDR range to base score mapping
can be extended to identification of vulnerable systems in a net-
work.

Figure 3 depicts the visualization built on the top of CIDR
ranges against Base Vulnerability Scores after post-processing.
This visualization is based only on a subset of our data. How-
ever, we believe that the illustration is representative of the
promise our proposed approach holds for vulnerability mon-
itoring and trend analysis on a per-network or region level.
These visualizations could help security experts analyse chang-
ing trends to the security posture of their internal networks or
networks to which they connect. It can also assist in the cases
where SMRs are attempting to patch vulnerable endpoints in a
network.

FIGURE 3. Vulnerability Assessment (on Base Scores) vs CIDR ranges
- Geographical analysis.

5. Conclusion and Future Work

In this work, we have introduced a novel, foundational ap-
proach to UAS parsing that is scalable, extensible, and most im-
portantly, robust to the varying formats of UASs. With strong
performance in several categories, we demonstrate that our pro-
posed approach also shows promise in enterprise settings where
reliable parsing of UASs is of paramount importance.

We have also demonstrated how our approach could ostensi-
bly be used in cybersecurity-specific contexts for vulnerability
trends analysis on a network or regional level. While not in
the scope of this work, we believe that our methodology can be
adapted and utilized in several other fields of application where
the independent data consist of strings that have a complex,
partially-standardized structure and cannot be tokenized using
tokenizers for common natural languages.

As for future work, we believe that there can be several av-
enues of research for improving the performance of our mod-
els. The primary examples of one such direction is improving
the performance of our parsers on very-low-support classes, or
few-shot learning, for parsing rare UASs such as UASs from
smart speakers. We are also looking to improve the perfor-
mance on models on difficult examples, as seen with the Linux
OS in our experimental results. We have seen promising ini-
tial results along this line of inquiry by utilizing curriculum
learning to train our models to parse easier examples first be-
fore introducing them to harder examples. Our approach uses a
weighted average of the Euclidean distance of a chosen UAS’s
word embedding from the mean word embeddings, the differ-
ence in length of the string from the mean length, and the output
of the name classification models. Given the initially strong ex-
perimental results, we believe that this research direction also
warrants further investigation.

TABLE 7. Scoring system examples on CIDR Ranges

CIDR Range User Agent Strings Software Operating
System

Base Score
(from CPE
names)

Avg. Base
Score

Mozilla 5.0 (Windows Phone 8.1 ARM Trident 8.0 Touch rv :
11.0 IEMobile 11.0)

Internet
Explorer, 11

Windows
8.1

6.15814104

Mozilla 5.0 (Linux Android 12 SM-G986B) AppleWebKit
537.36 (KHTML, like Gecko) Chrome 105.0.0.0 Mobile

Chrome,
105.0.0.0

Android,
12

6.57974525

Mozilla 5.0 (Linux Android 11 SM-G988B) AppleWebKit
537.36 (KHTML, like Gecko) Chrome 105.0.0.0 Mobile

Chrome,
105.0.0.0

Android,
11

6.07651594

......

......
Mozilla 5.0 (Linux Android 9 SM-N960F Build
PPR1.180610.011 wv) AppleWebKit 537.36 (KHTML,
like Gecko) Version 4.0 Chrome 105.0.5195.136 Mo-
bile Safari 537.36 SheinApp(shein 8.5.6) TTID hy-
brid@wing.android.1.0.1

Android
WebView,
105.0.5195.136

Android 5.79486228

Mozilla 5.0 (Linux Android 12 SM-A515F Build
SP1A.210812.016 wv) AppleWebKit 537.36 (KHTML,
like Gecko) Version 4.0 Chrome 105.0.5195.136 Mobile
Safari 537.36 5bFB.IAB Orca-AndroidFBAV 379.1.0.23.114
5d

Facebook
App,
379.1.0.23.114

Android,
12

5.80187262

Mozilla 5.0 (Windows NT 10.0 WOW64 Trident 7.0 NMTE
rv : 11.0)......

Internet
Explorer, 11

Windows,
10

6.39906788

......

......

1.123.**.*/24 5.977965983

101.127.**.*/24 5.947666269

References

[1] T. M. Corporation. [Online]. Available:
https://cve.mitre.org/.

[2] Y. Zhang, H. Mekky, Z.-L. Zhang, R. Torres, S.-J. Lee, A.
Tongaonkar, and M. Mellia, ”Detecting malicious activi-
ties with user-agent-based profiles,” pp. 3016-316, 2015

[3] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M.
Conti, “Detecting android malware leveraging text se-
mantics of network flows,” IEEE Transactions on In-
formation Forensics and Security, vol. 13, no. 5, pp.
1096–1109, 2017.

[4] T. Tanaka, H. Niibori, S. Li, S. Nomura, H. Kawashima,
and K. Tsuda, “Bot detection model using user agent and
user behavior for web log analysis,” Procedia Computer
Science, vol. 176, pp. 1621–1625, 2020, Knowledge-
Based and Intelligent Information Engineering Sys-
tems: Proceedings of the 24th International Conference
KES2020.

[5] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q.
Ye, and T.-Y. Liu, “Lightgbm: A highly efficient gradient
boosting decision tree,” Advances in neural information
processing systems, vol. 30, 2017.

[6] J. Chen, G. Gou, and G. Xiong, “An analysis of
anomalous user agent strings in network traffic,” in
2019 IEEE 21st International Conference on High Per-
formance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th
International Conference on Data Science and Sys-
tems(HPCC/SmartCity/DSS), pp. 1771–1778, 2019.

[7] K. Boda, Á M. Földes, G. G. Gulyás, and S. Imre, “User
tracking on the web via cross-browser fingerprinting,” in
Information Security Technology for Applications: 16th
Nordic Conference on Secure IT Systems, NordSec 2011,
Tallinn, Estonia, October 26-28, 2011, Revised Selected
Papers 16. Springer, pp. 31–46, 2012.

[8] M. Grill and M. Rehák, “Malware detection using http
user- agent discrepancy identification,” in 2014 IEEE In-
ternational Workshop on Information Forensics and Secu-
rity (WIFS). IEEE, pp. 221–226, 2014.

[9] T. Lewis, “Http header heuristics for malware detection,”
SANS Institute InfoSec Reading Room, 2013.

[10] Y. Gao, Y. Ma, and D. Li, “Anomaly detection of ma-
licious users’ behaviors for web applications based on
web logs,” in 2017 IEEE 17th International Conference

on Communication Technology (ICCT), pp. 1352–1355,
2017.

[11] M. Zolotukhin, T. Hämäläinen, T. Kokkonen, and J. Sil-
tanen, “Analysis of http requests for anomaly detection
of web attacks,” in 2014 IEEE 12th International Confer-
ence on Dependable, Autonomic and Secure Computing,
pp. 406–411, 2014.

[12] I. T. Jolliffe, Principal component analysis for special
types of data. Springer, 2002.

[13] D. M. Tax and R. P. Duin, “Support vector data descrip-
tion,” Machine-learning, vol. 54, pp. 45–66, 2004.

[14] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means al-
gorithm: A comprehensive survey and performance eval-
uation,” Electronics, vol. 9, no. 8, pp. 1295, 2020

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-
based algorithm for discovering clusters in large spatial
databases with noise,” in Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data
Mining, ser. KDD’96. AAAI Press, pp. 226–231, 1996.

[16] W. Rong, B. Zhang, and X. Lv, “Malicious web request
detection using character-level cnn,” in Machine Learn-
ing for Cyber Security: Second International Conference,
ML4CS 2019, Xi’an, China, September 19-21, 2019, Pro-
ceedings 2. Springer, pp. 6–16, 2019

[17] S. Park, M. Kim, and S. Lee, “Anomaly detection for http
using convolutional autoencoders,” IEEE Access, vol. 6,
pp. 70884–70901, 2018.

[18] M. Gniewkowski, H. Maciejewski, T. R. Surmacz, and
W. Walentynowicz, “Http2vec: Embedding of http re-
quests for detection of anomalous traffic,” arXiv preprint
arXiv:2108.01763, 2021.

[19] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“Roberta: A robustly optimized bert pretraining ap-
proach,” arXiv preprint arXiv:1907.11692, 2019.

[20] WhatIsMyBrowser, “Browse our database of 219.4
million user agents,” 2023.[Online]. Available:
https://explore.whatismybrowser.com/useragents/explore/.

[21] P. Bojanowski, E. Grave, A. Joulin, and T.
Mikolov, “Enriching word vectors with sub
word information,” Jun 2017. [Online]. Avail-
able:https://arxiv.org/abs/1607.04606.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.
Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “At-
tention is all you need,” Dec 2017. [Online]. Available:
https://arxiv.org/abs/1706.03762.

http://arxiv.org/abs/2108.01763
http://arxiv.org/abs/1907.11692

	. Introduction
	. Related Work
	. Problem Setup
	. Data and Pre-processing
	. Modeling Considerations and Architectures
	. UAS Embeddings
	. Representation Layer
	. Task Specific Heads

	. Experimental Setup
	. Version Indexing models
	. Name Classification models

	. Post Processing

	. Results
	. Name Classification Results
	Version Indexing Results
	. Vulnerability Visualization

	. Conclusion and Future Work

