Case studies

When a financial services company wanted more from their data

Deloitte Analytics built a new IM framework from the inside out

The client, a policy bank and member of the financial services sector, was experiencing difficulty with their information management techniques. The client was getting involved in new areas of business in recent years and with new regulatory requirements they needed their Information Management (IM) strategy to evolve.

Recognizing the issues they were having the team got to work standardizing the data for analytic needs. Using both internal and external data, an enterprise information management framework was built to help the client manage and use their data in a more efficient manner. The model created has been used for other projects, both within financial services and in other industry sectors.


The client required advice on IM to accommodate their long-term business and IT strategies. This included improving their current IM practice, as well as re-defining the IM strategy in line with their future business expansion in areas such as lending and investment. The IM system that was to be integrated needed to consider market demands, business expectations, and regulatory needs.

The client was looking for long-term benefits through reduced systematic risk and better use of data, and to create a competitive advantage by leveraging the data successfully. They wished to manage the quality, consistency, usability, security, and availability of their organization’s data to facilitate business process decisions.

The challenge

The analytics team recognized that the client was experiencing two major difficulties; firstly the management perspective for enterprise information, and secondly the technical perspective of managing information. They wanted to leverage Deloitte Analytics’ mature framework and best practice in Enterprise Information Management to provide recommendations and models to overcome the company’s problems.

The project went through four stages to integrate the IM system:

1. Data Standards – this involved laying out all data standards within the requirements for managing the information, while at the same time catering for the technical difficulties the company was facing, standardizing all different types of data including the data quality matrix

2. Information Governance – setting up the governance framework for managing this information. This was broken down into areas according to the data standards. For example:

  • Management framework with regard to data quality
  • Management framework with regard to the analytic data model
  • Governance framework with regard to data management
  • Applications from a technical perspective – this was based on data standards and governance framework techniques. Using best practice in Enterprise BI, ODS, and ETL to standardize, analyze, and manage the data from a single point of view

3. Applications from a business perspective – there were two main areas within this phase, including regulatory reporting and workflow application for managing the data

The project is currently in stage 3 of 4, and the client is extremely happy with the information management system that has been integrated into the business.

How analytics helped

The model created has helped the client understand the roadmap to information governance, based on their current and future needs. The IM model will align with the client’s new application architecture and it is highly reusable as their data and business expands.

The majority of the data used was for analysis and reporting and a follow on project has been proposed to the bank to use some of the information for predictive and future purposes.

The solution

Did you find this useful?