Sustainable Aviation Fuels (SAF) in China

Checking for Take-off

September 2023
Aviation’s pathway to carbon neutrality
For the aviation industry to keep growing, it is critical that it reach net zero emissions, but there are key challenges that must be overcome. Aviation is recognized as a “hard-to-abate” sector and SAF is the only commercially viable, near-term mechanism able to reduce the carbon intensity of air travel.

Aviation supports $3.5 trillion (4.1%) of the world’s GDP and accounts for 3% of all global CO₂ emissions, but as other sectors decarbonize its contribution could reach 22% of global emissions by 2050.

IATA forecasts the biggest growth in passenger numbers will be in Asia Pacific. In 2021, the Chinese domestic passenger market made up 18.9% of global passengers

SAF will be aviation’s primary means of decarbonization – as a drop-in fuel there is no need to redesign aircraft or airport infrastructure – but action must focus on scaling production and lowering cost.

Sectoral scenarios anticipate that SAF will bring between 50 and 75% of carbon reductions required by aviation in 2050.¹

1. ATAG Waypoint 2050 (link)
Relying on business as usual and waiting for new clean technologies to emerge is an inadequate strategy.

The aviation sector needs to explore and leverage multiple strategies to ensure a timely and successful transition.

Aviation’s decarbonization goals

The industry, through the International Air Transport Association (IATA)\(^1\) and the Air Transport Action Group (ATAG), has committed to Net Zero by 2050.\(^2\)

The International Civil Aviation Organization (ICAO) formally recognized that technology and market-based measures will be needed for industry decarbonization. This will be achieved through **multiple levers**, including:

- Efficiency gains
- Sustainable aviation fuels (SAF)
- Carbon offsetting
- New propulsion systems such as electric batteries and hybrid aircraft
- The use of hydrogen

However, the successful development and deployment of SAF will be critical to reducing emissions by 2050.

Decarbonization levers

<table>
<thead>
<tr>
<th>Decarbonization levers</th>
<th>Description</th>
<th>Role and Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainable aviation fuel (SAF)</td>
<td>Fuels from sustainable resources to substitute fossil-based kerosene</td>
<td>Main decarbonisation option in the next 30 years; ability to use with existing aircraft</td>
</tr>
<tr>
<td>Efficiency gains</td>
<td>Design and operational improvements to reduce fuel burn</td>
<td>Important option but impact diminishes over time</td>
</tr>
<tr>
<td>Offsets</td>
<td>Investment in out-of-sector emission reductions or removal</td>
<td>Important as other long-term options are scaled up</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>Combustion of green hydrogen and/or conversion to electricity through fuel cells</td>
<td>Requires storage and new airframe designs. Long time to develop, ensure safety, certify and deploy at scale</td>
</tr>
<tr>
<td>Battery</td>
<td>Electric propulsion with zero emissions if charged with green electricity</td>
<td>Battery weight and size limits applicability to short-haul routes</td>
</tr>
<tr>
<td>Behavioral change</td>
<td>Reduction of demand resulting from modal shift</td>
<td>Behavioural change may be outpaced by population and economic growth</td>
</tr>
</tbody>
</table>

1. IATA Net Zero Commitment ([link](#))
2. ATAG Global Aviation Emissions ([link](#))

© 2023. For information, contact Deloitte China.
What is Sustainable Aviation Fuel (SAF)?
SAF is an alternative jet fuel that represents the most viable near-term solution to decarbonize the aviation industry.

What is SAF?
SAF is a drop-in liquid fuel alternative that can reduce carbon emissions by up to 85% when compared to traditional jet fuel, depending on the feedstock selection and production pathway. SAF is currently produced from several sources (feedstocks) including forestry residue, agricultural waste, used cooking oils, and municipal solid waste. SAF producers are also exploring synthetic production pathways via a process that captures carbon directly from the air.

In addition, SAF is considered ‘sustainable’ when:
- Feedstock does not compete with food crops or water supplies
- SAF does not contribute to forest degradation or soil depletion
- SAF recycles carbon stored in the biomass of feedstock

Immediate Action:
SAF is a ‘drop-in’ fuel compatible with existing aircraft and airport infrastructure, which does not require significant changes to aircraft and airports and delay deployment.

Commercial Viability:
At this time, SAF is the only near-term climate solution, as hydrogen and electric propulsion will develop over the next decade and may not be viable for long haul air travel (which is the largest contributor to sector emissions).

Scalability:
Global SAF production is estimated to grow to cover 10% of total jet fuel sales by 2030, based on sustainable feedstock availability and capital investment.

Co-Benefits:
SAF has several co-benefits beyond reducing carbon emissions, including improved air quality, job creation and investment renewable energy, and increased energy security.

Accounting:
SAF is not recognized (officially) by the GHG Protocol for Scope 3 emissions reductions. In lieu of official guidance, the market is working to develop guidance and demand signals in support of SAF certificate inclusion in GHG inventories.
Four key technical pathways to SAF

As of April 2023, ASTM International has approved nine technical routes based on HEFA, ATJ, and FT. The PtL pathway is still awaiting approval.

Hydroprocessing Esters & Fatty acids (HEFA)
- Feedstock: Algae, Cooking oil, Plant oils, Tallow
- Initial processing: Oil extraction, Neutralisation, Rendering
- Key intermediate: Lipids

Alcohol-to-Jet (ATJ)
- Feedstock: Sugarcane, Molasses, Corn
- Initial processing: Fermentation, Gasification
- Key intermediate: Isobutanol

Fischer-Tropsch (FT)
- Feedstock: Agricultural residues, Forestry residues, Energy crops, Waste
- Initial processing: Pre-treatment, Pre-treatment, Oil extraction, Separation
- Key intermediate: Syngas

Power to liquid (PtL)
- Feedstock: Direct Air Capture (DAC), CO2 from DAC, CO2 from other industries, Renewable electricity
- Initial processing: Electrolysis
- Key intermediate: Synthesis

Potential

- **HEFA**
 - Technology maturity: mature
 - LCA GHG reduction compared to fossil jet: 73%~84%
 - HEFA is currently the most commercially viable process and is expected to dominate China's SAF market before 2030.

- **ATJ**
 - Technology maturity: Commercial piloting
 - LCA GHG reduction compared to fossil jet: 85%~94%
 - ATJ has a high availability of cheap feedstock in the US, whilst the cost of feedstocks in China is relative higher.

- **FT**
 - Technology maturity: Commercial piloting
 - LCA GHG reduction compared to fossil jet: 85%~94%
 - There are many potential feedstock sources, the challenge lies in how to efficiently obtain and process them.

- **PtL**
 - Technology maturity: In development
 - LCA GHG reduction compared to fossil jet: 99%
 - PtL processing offers great potential for emissions reduction with unlimited production potential via direct air capture.

Sources: ICAO, EASA, World Economic Forum, Airbus
© 2023. For information, contact Deloitte China.
The SAF Ecosystem

Stakeholders within the aviation industry are aiming for decarbonization, but more action is needed to reach this goal.

Feedstock suppliers
- Investment in feedstock collection and segregation processes

SAF Producers
- Technologies for using feedstock to produce bio SAF is mature; the challenge lies in how to efficiently obtain and process feedstocks
- Further technological development is needed to reduce production costs and expand production

Fuel suppliers
- SAF procurement, sales and into-plane services
- Comply and promote standards, certification and reporting to ensure SAF and offset quality

Airlines
- Motivate passengers to pay for carbon offsets and SAF
- Raise the decarbonization ambition and encourage other players in the ecosystem to act

Airports
- Promote SAF use and fleet upgrading
- Strengthen infrastructure and the allocation of specialist personnel

Logistics services
- Large corporate travelers and cargo owners are encouraged to take the lead and utilize SAF to fulfill their climate commitments
- Internal cost control and investment

Investors and financial institutions
- Provide financing support

Regulators
- Regulations, incentives and policy guidance are needed to help accelerate the production and use of SAF

Aircraft manufacturers
- Invest in R&D to address technological challenges
- Seek to establish partnerships with other ecosystem players that want to accelerate SAF and decarbonization
- Improve aircraft efficiency and accelerate fleet updates

Source: Shell, Institute of Energy, Peking University

© 2023. For information, contact Deloitte China.
Aviation’s carbon neutral journey in China

Past

- **February**
 - 1st commercial aviation flight (London to Amsterdam) using a sustainable biomass-to-liquid fuel mixed with traditional jet fuel.

- **September**
 - *Clean Skies for Tomorrow Coalition* launched to support SAF to reach 10% of global jet fuel supply by 2030 (Deloitte is a signatory).

- **September**
 - China announced its goal to have carbon emissions peak before 2030 and achieve carbon neutrality before 2060.

- **October**
 - IATA member airlines committed to achieving net-zero from their operations by 2050. This pledge brings aviation in line with the objectives of the Paris Agreement.

- **2008**
 - **October**
 - Air China and Boeing conducted China’s first sustainable biofuel flight.

- **2011**
 - **December**
 - Paris Agreement to limit global temperature change to 2 degrees while pursuing efforts to limit the increase to 1.5 degrees

- **2015**
 - **November**
 - DB Schenker and Lufthansa and flew the world’s 1st CO₂ neutral cargo return flight from Frankfurt to Shanghai

- **2019**
 - **October**
 - The State Council’s Action Plan for Peaking Carbon Emissions by 2030, promotes advanced liquid biofuels and SAF, as well as fuel efficiency.

- **2020**
 - **October**

- **2021**

© 2023. For information, contact Deloitte China.
Aviation’s carbon neutral journey in China

2022
- **January**
 Civil Aviation Administration of China’s (CAAC) 14th Five-Year Plan for Green Civil Aviation Development promotes the use of SAF with a goal to raise consumption to over 20,000 tons in 2025 and cumulatively to 50,000 tons during the 14th FYP period.

- **May**
 The NDRC’s 14th FYP for Bioeconomy Development Plan outlines areas with good conditions are encouraged to promote and pilot the use of biodiesel and advance the use of aviation biofuels.

2023
- **March**
 State Power Investment Corporation Ltd and Cathay Pacific signed a memorandum of cooperation, covering four sustainable aviation fuel production facilities.

- **April**
 Airbus and the China National Aviation Fuel Group (CNAF) signed a MoU to intensify cooperation on the production, competitive application and common standards formulation for SAF.

- **May**
 The NDRC and NEA’s 14th FYP for Renewable Energy Development outlines efforts to develop non-food liquid biofuels and promote biodiesel and aviation biofuel production.

- **June**

- **November**
 Colorful Guizhou Airlines successfully completed a passenger commercial flight using SAF in Mainland China (from Ningbo to Guiyang).

- **December**
 Air China Cargo successfully completed the first commercial cargo flight using SAF in the Chinese mainland (from Hangzhou to Belgium).

- **November**
 Airbus signed agreements with Xiamen Airlines, Zhejiang Loong Airlines and Colorful Guizhou Airlines to promote the use of SAF for commercial flights in China.

© 2023. For information, contact Deloitte China.
Potential SAF supply and demand

With such a large theoretical availability of feedstock, China could become a significant global supplier.

China’s potential SAF supply and demand

2030
- China’s total jet fuel consumption is estimated to reach 60.5 million tons (Mt) by 2030, with a CAGR of 8% from 2023 to 2030
- SAF demand in China may reach 3 Mt/year by 2030 if China’s aviation sector aligns with IATA’s 5.2% SAF target
- If theoretical feedstock is fully converted to SAF, potential supply in China could exceed 19 Mt/year by 2030 – far exceeding potential domestic demand
- To facilitate such growth, action need to be taken to reduce production costs as well as consolidate domestic and international demand for SAF

2050
- China’s projected jet fuel demand is estimated to reach 132.5 Mt by 2050, with a CAGR of 4% from 2031 to 2050
- With advancement in technology and China’s goal to reach carbon neutrality, domestic SAF demand is expected to reach 86 Mt/year by 2050
- China’s SAF production capacity could reach 82 Mt/year by 2050, facilitated by improved efficiency of feedstock processing and scaling green hydrogen production

Source: IATA, Deloitte Research

© 2023. For information, contact Deloitte China.
Supply side | China has the potential to produce enough SAF to meet domestic demand

The potential supply of feedstock for SAF in China is positive, but it requires innovative approaches to establish technical routes and production capacity.

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Availability (million tons/year)</th>
<th>SAF output ratio (%)</th>
<th>SAF production capacity upper limit (million tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used cooking oil</td>
<td>3.4</td>
<td>40</td>
<td>1.36</td>
</tr>
<tr>
<td>Agricultural waste</td>
<td>207.0</td>
<td>10</td>
<td>20.70</td>
</tr>
<tr>
<td>Forestry waste</td>
<td>195.0</td>
<td>10</td>
<td>19.50</td>
</tr>
<tr>
<td>Municipal organic solid waste</td>
<td>23.5</td>
<td>10</td>
<td>2.35</td>
</tr>
<tr>
<td>Industrial waste gas-based ethanol</td>
<td>5.0</td>
<td>50</td>
<td>2.50</td>
</tr>
<tr>
<td>Total</td>
<td>46.41</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- China has significant potential to develop SAF sustainably as feedstocks are not expected to compete with food supplies, although infrastructure will be needed to develop rural supply chains.
- Used cooking oil (UCO) is a major source of feedstock for biodiesel in China and is expected to be the major feedstock for SAF at least in the next decade.

Source: Institute of Energy, Peking University

© 2023. For information, contact Deloitte China.
Supply side | However, production capacity development is still in an early stage
As of May 2023, the combined operational and announced SAF production capacity in China is 1.6~1.8 Mt/year

Current SAF production capacity

<table>
<thead>
<tr>
<th>Developers</th>
<th>Technology provider</th>
<th>Pathway</th>
<th>Annual capacity (tons)</th>
<th>Location</th>
<th>Announced</th>
<th>Planned operational start</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinopec</td>
<td>Sinopec</td>
<td>HEFA</td>
<td>100,000</td>
<td>Zhenhai, Zhejiang</td>
<td>June 2021</td>
<td>June 2022</td>
</tr>
<tr>
<td>Oriental Energy</td>
<td>Honeywell</td>
<td>HEFA</td>
<td>1,000,000</td>
<td>Maoming, Guangdong</td>
<td>February 2022</td>
<td>Not available</td>
</tr>
<tr>
<td>Jiaao Enprotech</td>
<td>Honeywell</td>
<td>HEFA</td>
<td>Not available</td>
<td>Lianyungang, Jiangsu</td>
<td>September 2022</td>
<td>Not available</td>
</tr>
<tr>
<td>Sichuan Jinshang</td>
<td>Honeywell</td>
<td>HEFA</td>
<td>300,000</td>
<td>Suining, Sichuan</td>
<td>May 2023</td>
<td>Not available</td>
</tr>
<tr>
<td>SPIC & Cathay Pacific</td>
<td>Not available</td>
<td>Similar to PtL</td>
<td>4 * 50,000-100,000</td>
<td>N/A</td>
<td>April 2023</td>
<td>2024 ~ 2026</td>
</tr>
</tbody>
</table>

Companies that produce HVO biodiesel can shift their production to SAF with retrofitting. According to Peking University’s estimate, if producers repurpose their existing HVO capacity for SAF, this could bring an additional 1.9 million tons of annual capacity online.

Key issues

- China’s SAF supply is still in its early stage.
- Sinopec Zhenhai Refinery obtained airworthiness certification for China’s first large-scale production of SAF from the Civil Aviation Administration of China (CAAC) in 2022, and more market players are emerging.
- The HEFA pathway dominates the current and announced production capacities in China, while SPIC and Cathay Pacific plan to use a pathway similar to PtL to generate SAF.
- China has huge capacity for renewable electricity generation - this could help drive the commercialization and scaling of PtL.
- China’s green hydrogen development is driven by provincial plans. Over ten provinces, including Shandong, Qinghai and Sichuan, have developed explicit plans for hydrogen development. Several projects will be deployed around the country to produce synthetic fuels.
- China’s overall decarbonization goals support the emergence of incentives. With the right financial allocation, China could become global leader in SAF production.

Source: China Daily, Honeywell, Cathay Pacific
© 2023. For information, contact Deloitte China.
Demand side | Early market actions

Commercial utilization of SAF is still at an early-stage, but we found that Chinese airlines are engaged in SAF flight tests

<table>
<thead>
<tr>
<th>Airlines</th>
<th>SAF Target</th>
<th>Flights using SAF</th>
<th>Ecosystem collaboration</th>
<th>Key actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>China Southern</td>
<td>N/A</td>
<td>Two flights with SAF (February 2019 and October 2022)</td>
<td>N/A</td>
<td>Used first batch of domestic SAF fuel provided by Sinopec</td>
</tr>
<tr>
<td>China Eastern</td>
<td>N/A</td>
<td>Test flight with SAF in 2013 and flight with 5% SAF in 2022</td>
<td>N/A</td>
<td>Plans a series of flights powered by SAF in 2023</td>
</tr>
<tr>
<td>AirChina</td>
<td>N/A</td>
<td>Test flight with SAF in 2011 and a flight with SAF in 2022</td>
<td></td>
<td>Early user of SAF on the Chinese Mainland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>First commercial cargo flight using SAF in 2022</td>
<td></td>
<td>First commercial cargo flight using SAF on the Chinese Mainland</td>
</tr>
<tr>
<td>Cathay Pacific</td>
<td>Committed to use SAF for 10% of its total fuel consumption by 2030</td>
<td>38 flights with Airbus aircraft with SAF since 2016</td>
<td>Signed a MoU with SPIC for four SAF plants</td>
<td>Launched Asia’s first major Corporate SAF Programme</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Invested in Fulcrum BioEnergy, a US-based sustainable biofuel developer</td>
</tr>
<tr>
<td>Hainan Airlines</td>
<td>N/A</td>
<td>Commercial passenger flight with 50% SAF in 2015 and an intercontinental SAF passenger flight in 2017</td>
<td>N/A</td>
<td>First commercial passenger flight using SAF on the Chinese Mainland</td>
</tr>
<tr>
<td>Colorful Guizhou Airlines</td>
<td>N/A</td>
<td>Commercial passenger flight with 10% SAF in 2015</td>
<td>Signed agreements with Airbus to promote the use of SAF in commercial flights in China in 2022</td>
<td>Received a grant of RMB50 million from the Ministry of Industry and Information Technology (MIIT) to support its SAF program in 2021</td>
</tr>
</tbody>
</table>
Demand side | Stimulating customer interest by bringing corporate customers to SAF

The book-and-claim model allows airlines to buy SAF certificates – and offer those certificates to their passengers – without being tied to physical supply.

As the production of SAF is still limited, there is no guarantee that airlines can access SAF through the existing supply chain network.

The book-and-claim model creates environmental attributes that are tracked as SAF certificates.

It enables airlines to purchase SAF without receiving physical delivery and to transfer its environmental attributes to corporate customers.

• The SAF producer ‘books’ their SAF into a registry
• A robust chain of custody certification that guarantees full transparency and avoids the risk of fraud
• SAF used in Airport A is claimed by airlines and their corporate customer located in Airport B

Source: RSB, UNFCCC, World Economic Forum

© 2023. For information, contact Deloitte China.
SAF is currently 2x to 5x higher than fossil-based jet fuel, cost savings are expected as production scales. SAF production costs can vary significantly by technological routes. HEFA process is currently the most cost competitive option, while PTL process presents significant cost reduction potential

Possible impacts to prices

<table>
<thead>
<tr>
<th>Possible impacts to prices</th>
<th>DRIVING REDUCTIONS</th>
<th>DRIVING INCREASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Subsidies and Incentives</td>
<td>Government can provide support to help reduce the costs of production</td>
<td>Growing Regulations</td>
</tr>
<tr>
<td>Production Capacity</td>
<td>As production increases, the costs per unit of fuel tend to decrease due to economies of scale</td>
<td>Voluntary demand</td>
</tr>
<tr>
<td>Clear Reporting Standards</td>
<td>Reporting standards that recognize SAF as a value chain carbon reduction will likely result in increased investment</td>
<td>Delays in Reporting Standards</td>
</tr>
<tr>
<td>Pass on Cost Savings</td>
<td>Fuel producers and airlines are facing increased pressures to pass cost savings to customers to protect aviation accessibility</td>
<td>Customer Willingness to Pay</td>
</tr>
<tr>
<td>Feedstock Availability</td>
<td>Greater availability of feedstocks and their lower costs can contribute to lower prices</td>
<td>Feedstock Availability</td>
</tr>
<tr>
<td>Value Chain Development</td>
<td>Value chain efficiencies such as supply chain logistics and transportation, are expected to help reduce costs</td>
<td>Feedstock Volatility</td>
</tr>
</tbody>
</table>

Growing Regulations
Production and distribution of SAF is subject to environmental regulations, which can increase costs

Voluntary demand
Despite projected increases in production capacity, corporate commitments exceed projected supply. Supply and demand tensions will result in increased costs

Delays in Reporting Standards
Absence of reporting standards (or SAF is not recognized as an in-value chain carbon reduction) will likely stunt investments

Customer Willingness to Pay
Airlines raised airfares during the post-covid boom to offset rising fuel prices and losses incurred during the pandemic. Thus, increased SAF costs may be passed to end customers

Feedstock Availability
Availability of sustainable feedstocks is currently limited which can increase costs

Feedstock Volatility
Prices of sustainable feedstocks can fluctuate, which can lead to increases in SAF prices

SAF prices are dependent on the emissions factor of the fuel (calculated in g CO₂e/MJ) which vary by fuel producer (e.g., Neste, WorldEnergy) and are often specific to a given batch of fuel; emissions factors of 14.0 and 25.0 g CO₂e/MJ were used to calculate the provided range ($/MT)

SAF in China | Check for Take-off 14

© 2023. For information, contact Deloitte China.
Global progress

Actions taken around the world can impact the development of SAF in China

The US is increasing incentives for SAF as part of the Inflation Reduction Act (IRA)

Sustainable Aviation Fuel Credit (2023-2024): The Inflation Reduction Act (IRA) extended the Blenders Tax Credit, but establishes a new SAF-specific credit for SAF as part of a qualified fuel mixture sold or used in the US¹

Clean Fuel Production Credit (2025 – 2027): The IRA also established the CFPC in which SAF will be eligible for a credit of up to $1.75/gal for fuels with a 100% GHG reduction, with reduced credits for fuels demonstrating lower GHG reductions¹

SAF Grand Challenge: Targets US SAF production of 3+ billion gallons by 2030, enough SAF production to meet 100% of demand in 2050 (a projected 35 billion gallons) and $4.3 billion in funding for SAF projects²

The EU Green Deal includes proposed legislation mandating minimum SAF usage and GHG emissions reductions of 55% by 2030

ReFuelEU Aviation: The ‘Fit For 55’ package includes proposed obligations on fuel suppliers to distribute an increasing share of SAF; minimum shares of sustainable fuels must ramp up from 5% of SAF by 2030 to 63% of SAF by 2050³

European Emission Trading System: Includes ‘polluter pays’ provisions that increase the responsibility for the industry to pay for its carbon footprint and new allowances for SAF totaling €1.6 billion⁴

Renewable Energy Directive III: Increased the 2030 renewable energy target to 45%, SAF likely to exceed ReFuel targets due to low greenhouse gas intensity compared to jet kerosene⁴

Key Challenges

The comprehensive nature of the US Inflation Reduction Act (IRA) has influenced the industry landscape, potentially impacting foreign investment in SAF projects in China until 2030.

Government is actively promoting the usage of SAF, but explicit strategies and further incentives or mandates for SAF production and utilization will be necessary to guide the industry and attract investments.

Delayed recovery affected the profitability of the aviation industry in China. As traditional fuel prices rise, the incentives of airlines and customers to pay SAF green premiums need to be encouraged.
Call for action
In order to ensure commercial viability, it is crucial to establish a supportive policy framework that stimulates demand and explores innovative financing mechanisms.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambition</td>
<td>The aviation industry needs to set a more ambitious goal for SAF utilization to meet the aviation industry’s Net Zero commitment</td>
</tr>
<tr>
<td>Alliances</td>
<td>New collaborations across the value chain will be key to unlock SAF’s future</td>
</tr>
<tr>
<td>Customers</td>
<td>Creating a value proposition that encourages passengers to contribute to sustainable flying will help drive demand</td>
</tr>
<tr>
<td>Feedstock</td>
<td>Improve the feedstock collection system and evaluate its distribution and availability to facilitate better allocation of resources for the industry</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>While blended SAF can use existing infrastructure, the industry still needs to strengthen infrastructure to cope with future demand</td>
</tr>
<tr>
<td>Innovation</td>
<td>Further innovation is needed to achieve production cost reduction or new technologies that run on less constrained feedstocks</td>
</tr>
<tr>
<td>Investment</td>
<td>Investors and financial institutions need to develop an innovative financing blueprint to mobilize capital for SAF</td>
</tr>
<tr>
<td>Leadership</td>
<td>Airlines and the fuel industry can lead by promoting SAF through different pilot projects and investment in the supply chain</td>
</tr>
<tr>
<td>Policy incentives</td>
<td>On both demand and supply side policy is needed to encourage investment and accelerate the adoption of SAF</td>
</tr>
</tbody>
</table>

SAF plays a vital role in the aviation industry’s journey towards decarbonization. However, achieving an industry-wide transition within the target date necessitates collaboration across the value chain, supportive policies, substantial investments, with a limited amount of time.
Deloitte is committed to sharing its perspective on SAF and aviation decarbonization to support our clients.

Deloitte US entered agreements with airlines to purchase sustainable aviation fuels and has detailed our early experiences and insights, as well as considerations for other companies entering the SAF market.

Deloitte and Shell prepared a report outlining how in the complex ecosystem of decarbonizing aviation, collaboration will be needed between players in the sector and across sectors to scale up demand and production of SAF.

Deloitte studied the challenge of decarbonizing aerospace, the threat to current industry revenue models, and how SAF and electric propulsion represent the best possible solutions.

Although SAF is not the only possible solution to decarbonizing the aviation industry, Deloitte analyzes how it is a critical stage in achieving near-term emissions reductions.

Deloitte publishes its Global Impact report annually, which includes reporting on the inclusion of SAF in our full life-cycle assessment (LCA) of air travel emissions.
About Deloitte

Deloitte China provides integrated professional services, with our long-term commitment to be a leading contributor to China’s reform, opening-up and economic development. We are a globally connected firm with deep roots locally, owned by our partners in China. With over 20,000 professionals across 30 Chinese cities, we provide our clients with a one-stop shop offering world-leading audit & assurance, consulting, financial advisory, risk advisory, tax and business advisory services.

We serve with integrity, uphold quality and strive to innovate. With our professional excellence, insight across industries, and intelligent technology solutions, we help clients and partners from many sectors seize opportunities, tackle challenges and attain world-class, high-quality development goals.

The Deloitte brand originated in 1845, and its name in Chinese (德勤) denotes integrity, diligence and excellence. Deloitte's professional network of member firms now spans more than 150 countries and territories. Through our mission to make an impact that matters, we help reinforce public trust in capital markets, enable clients to transform and thrive, empower talents to be future-ready, and lead the way toward a stronger economy, a more equitable society and a sustainable world.

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited (“DTTL”), its global network of member firms, and their related entities (collectively, the “Deloitte organization”). DTTL (also referred to as “Deloitte Global”) and each of its member firms and related entities are legally separate and independent entities, which cannot obligate or bind each other in respect of third parties. DTTL and each DTTL member firm and related entity is liable only for its own acts and omissions, and not those of each other. DTTL does not provide services to clients. Please see www.deloitte.com/about to learn more.

Deloitte Asia Pacific Limited is a company limited by guarantee and a member firm of DTTL. Members of Deloitte Asia Pacific Limited and their related entities, each of which is a separate and independent legal entity, provide services from more than 100 cities across the region, including Auckland, Bangkok, Beijing, Bengaluru, Hanoi, Hong Kong, Jakarta, Kuala Lumpur, Manila, Melbourne, Mumbai, New Delhi, Osaka, Seoul, Shanghai, Singapore, Sydney, Taipei and Tokyo.

This communication contains general information only, and none of DTTL, its global network of member firms or their related entities is, by means of this communication, rendering professional advice or services. Before making any decision or taking any action that may affect your finances or your business, you should consult a qualified professional adviser.

No representations, warranties or undertakings (express or implied) are given as to the accuracy or completeness of the information in this communication, and none of DTTL, its member firms, related entities, employees or agents shall be liable or responsible for any loss or damage whatsoever arising directly or indirectly in connection with any person relying on this communication.

© 2023. For information, contact Deloitte China.