
Introduction 
As Artificial Intelligence (AI) capabilities 
have grown over the past decade, we bear 
witness to a proliferation of real-life appli-
cations. Across industry, financial services, 
public services, security and critical infra-
structure AI adoption is on the rise thanks 
to advances in stability, scalability and 
transparency. Time and again, Machine 
Learning (ML) accurately identifies patterns 
in complex data, presenting us with new 
opportunities to automate time-consuming 
tasks or even to push beyond the bound-
aries of human capabilities. Its inherent 
compatibility with other technologies such 
as cloud computing has ushered in un- 
precedented performance gains in all kinds 

of processes – and at scale. Implemented 
correctly, ML systems can have a truly 
transformational effect.

And yet, proper implementation remains a 
challenge. There are numerous factors to 
consider, from the algorithm/architecture 
to hyperparameters and, most importantly, 
the data used to train the model. Decisions 
based on poorly designed or executed 
AI may harm individuals “processed” by 
the AI and damage the reputation of the 
organization providing the AI system. The 
growing reliance on nascent AI technolo-
gies, especially in more critical or sensitive 
applications, raises concerns whether they 
are reliable and robust enough to handle 
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less-than-perfect, real-world conditions 
beyond the safe confines of the lab. It is 
essential for us to understand how such 
systems can – and likely will eventually – fail 
in order to design better systems in the 
future: Systems that are less likely to fail. 
Systems that, if they were to fail, will do so 
within acceptable limits and without caus-
ing serious economic, physical or psycho-
logical harm.  
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According to most experts, Deep Neural 
Networks (DNNs) already surpass their 
human counterparts in performing specific 
tasks such as classifying images. They are 
also notoriously complex and difficult to 
decipher, the rationale behind their predic-
tions a mystery to developers and consum-
ers alike. This not only negatively impacts 
acceptance among the general public but 
also AI’s potential to produce reliable out-
comes. Researchers in the field of robust-
ness have drawn attention to significant 
flaws in the way artificial neural networks 
make decisions that leave them susceptible 
to adversarial attack, misuse and technical 
failure. Bad actors do not even require full 
access to the internal architecture to manip-
ulate a model1, 2. 

Instead, they can use techniques that 
introduce imperceptible perturbations 
into the model data to compromise the 
system and alter its behavior (predictions 
or decisions). In many ways, hacked models 
are even more dangerous than inoperable 
models: If manipulation goes unnoticed, the 
models will continue to operate, but in ways 
contrary to the developer’s original intent. 
It is vital for designers to make their models 
resilient against (intentional) noise in the 
input data, also known as an adversarial 
attack1, 2. In the context of ML, we measure 
resilience in terms of the amount of noise 
necessary to change a model’s decision on 
the input data. 

Robustness is a far wider topic than resil-
ience to adversarial attack. A model that is 
optimally trained to reproduce outcomes 
with training data but fails to generalize 
to other cases is termed “over-fit.” For an 
AI model to be useful, it must be capable 
of generalizing beyond training data. Data 
has by far the largest impact on AI model 
performance – in terms of the quality, 
completeness and volume of a represent-
ative training dataset – and not just in the 
pre-launch phase, but also throughout the 
model’s lifecycle. To evaluate the robustness 
and generalization of models, we point out 
common pitfalls and minimize risk through 
techniques such as regular retraining, antici-
pation of potential adversaries or cross-vali-
dation testing to combat over-fitting. 

In the following sections, we examine typical 
challenges to model robustness and offer 
potential solution strategies. We conclude 
with an intuitive framework designed to pro-
actively evaluate the robustness and reliabil-
ity of models – addressing potential failures 
before they occur.

Where AI systems fall short
Despite their impressive abilities, AI systems 
are not sufficiently mature to auto- 
nomously manage critical applications in 
complex environments. The unique traits of 
AI may introduce new vulnerabilities beyond 
the classic variety common to any software. 
There are three distinct criteria for an AI 
system to meet before it may be considered 
ready to deploy in a real-world environment:

	• Reliability: The prediction accuracy meets 
expectations consistently over time, avoi-
ding too many oversights or false alarms.

	• Stability: The model performs well both 
generally and under stress conditions, such 
as in edge cases. It is not overly sensitive to 
naturally occurring noise, targeted noise is 
covered by resilience.

	• Resilience: Model behavior is not easily 
manipulated through exploitation of 
vulnerabilities (either within the code or the 
training data). 

While these criteria may be universally 
valid, deficiencies in the models are context 
and task-dependent, as in, for example, a 
time-series analysis for non-stationary data 
(e.g., analysis of the product prices). Common 
causes may contain/common causes are:

	• Unrepresentative data: The data (and its 
labels) used to train the algorithm does not 
represent the real-world environment in 
which the model is designed to operate.

	• Annotation quality: Human annotation 
brings a subjective interpretation to raw 
data (classification into types). Labelling can 
vary widely between human “taggers” who 
interpret raw data (objects in images) based 
on their own life experience. The resulting 
model predictions may be either erratic or 
consistently inaccurate.

	• Overfitting: The model succeeds only 
in “predicting the past” (e.g., the data on 
which it was trained) and cannot generalize 
to accurately predict based on new data it 
encounters in operation. 

	• Model decay: Performance decreases 
over time as the operational environment 
evolves past the dynamics learned during 
development. In other words, the training 
data that was once representative can no 
longer predict outcomes in the world  
as it is now – a phenomenon known as  
covariate shift or data drift. Model decay 
may also occur when the relationship 
between the input features and target vari-
ables changes (e.g., due to seasonality) – a 
phenomenon known as concept shift.

	• Under-specification: Even if there is con-
sistency in the pipeline (i.e., training data, 
features, pre-processing, algorithm selec-
tion), models can behave erratically when 
there are several ways to achieve the same 
performance on the evaluation dataset2. 
Even an optimally tuned model may not be 
a suitable reflection of reality.
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Evaluating the robustness of machine 
learning models 
A thorough evaluation of an AI system 
demands that we not only consider model 
performance (e.g., prediction accuracy, 
bias, transparency, computational cost) 
but also the robustness criteria (reliability, 
stability, and resilience). These will impact 
how we choose suitable metrics and pro-
cedures, along with data types, model class 
and other specifications pertaining to the 
use case. Metrics play a fundamental role: 
The right metrics will provide a quantitative 
guide for optimization, the wrong metrics 
risk optimizing toward the goals not central 
to our objectives.

These evaluation procedures build on com-
mon validation practices (k-fold cross-vali-
dation), testing for imbalance, detection of 
spectrum bias (capturing necessary diver-
sity and complexity) and out-of-sample 
validation (to limit overfitting), among 
others. We intentionally subject the model 
to stress situations to determine how 
well it will handle more ambiguous cases. 
Dealing with approximate situations is a 
strong selling point for AI models  – unam-
biguous cases may be treated by simpler 
models often make incorrect predictions 
when they are overly sensitive to unfamiliar 
“edge cases”, which conventional testing 
has failed to sufficiently address. To earn 
our trust, we need AI models to be flexible 
enough to handle edge cases as well as 
other imperfect situations.

Besides the sensitivity to edge cases, 
machine learning also introduces new 
attack vectors such as adversarial at- 
tacks, which are particularly important 
to consider. Bad actors can exploit these 
vulnerabilities in subsequent stages of the 
AI processing chain, posing multiple threats 
that could potentially add up to an aggre-
gated risk of system failure. Many forms 
of attack require knowledge of the model 
parameters – so-called white box adversa-
rial attacks. Conversely, black box adversa-
rial attacks (requiring no inside knowledge) 
present another very real risk.3 In a grey 
area between the black box and white box 
approach, researchers have found that 

some adversarial attacks may actually 
be transferable4, i.e., malicious samples 
designed to attack a known model (white 
box) can also be effective against another, 
unknown (black box) targets5, 6. 

Comprehensive testing demands multiple 
datasets in order to accommodate edge 
cases that arise for different reasons: A 
representative example may have been 
overlooked in the training data, input data 
may have become corrupted or certain 
situations may be unrecognizable to the 
model.

To assess the risk of model decay, we mea-
sure degradation based on either covariate 
shift (data drift), concept shift or a mix of 
both. There are several established metho-
dologies to detect model decay: statistical, 
window-based and ensemble-based.

Statistical methods of detecting changes 
in the data (covariate shifts) include vari-
ations of the sequential probability test 
(SPRT) to examine the following:

1. �the logarithm of probability distribution 
ratio for the features,  

2. �alterations of the classic 3-sigma rule 
that measures to what extent the “signal” 
deviates from the expected trajectory, 
and 
 

3. �drift detection methods (DDM) through 
monitoring of probability of model 
misclassification or through the estima-
tion of local density change using the 
nearest neighbor of each data point in 
the dataset. 

A significant drawback to these methods is 
their failure to indicate where or when the 
data drift occurs. We can overcome this by 
identifying the differences between Gaus-
sian Mixture Models (GMM) – applied to 
approximate datasets at multiple points in 
time. We calculate the difference between 
GMMs using statistical techniques such as 
the Jenson-Shannon ( JS) distance, which 
indicate drift where we observe a large gap 
between the clusters. 

A more advanced method of detecting 
concept drift is the Hierarchical Linear Four 
Rates (HLFR) framework7, an improved 
form of DDM. There are also several other 
statistically based methods that do not 
require training sets to detect both con-
cept and covariate shifts: the Population 
Stability Index (PSI), Kolmogorov-Smirnov 
statistics and the Kullback-Leibler (KL) or 
Jensen-Shannon ( JS) divergence test. 

Window-based detectors are highly effi-
cient at dealing with sequential or even 
real-time streaming data. They all origi-
nate from the Hoeffding Tree algorithm 
for incrementally building decision trees, 
e.g., constructing a decision tree from 
streaming data without storing examples 
in memory to utilize data before and after 
the detected shift. They employ a sliding 
window of adaptive size (for example, 
a two-window approach in ADwin algo-
rithms8).

Another large group of detectors is based 
on ensemble learning techniques designed 
to improve on simple window-based ap- 
proaches. The ensemble approach com-
bines drift detection algorithms that can 
distinguish between different types of 
shifts, for instance, abrupt changes vs. 
gradual drifts. The ensemble method inte-
grates several base methods and combines 
their advantages to obtain better predic-
tive performance. Typical fusion rules for 
ensemble models, such as majority voting 
or weighted voting, are not appropriate for 
drift detection as different base detectors 
usually find a drift at different time steps. 
For this reason, we find the best ensemble 
strategy for detecting concept drift is to 
acknowledge where any base detector 
triggers9, 10.
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Making machine learning models 
more robust
Machine learning models trained on data 
from the outside world can be corrupted 
by malicious attacks that, e.g., inject mali-
cious points into the models’ training sets. 
Common defense strategies against these 
attacks are:

	• Data sanitization: cleansing data of 
potentially malicious content before it 
trains the model

	• Robust learning: redesigning the learn- 
ing routine to defend against malicious 
actions and unknown situations 

Whereas data sanitization is self- 
explanatory, robust learning is rather 
more nuanced. We look at two different 
approaches in the following, which are 
both based on the security-by-design 
principle: adversarial training and regular-
ization.

Adversarial training: Attack algorithms 
probe decision boundaries to determine 
the relative ease to corrupt a model. With 
adversarial training, however, models are 
less prone to attack algorithms as they 
are already exposed to adversarial sam-
ples during training. Our objective is to 
strengthen models against such adversar-
ial attacks, learning from new and different 
examples to improve their ability to resist 
them. While sophisticated statistical meth-
ods do exist, adversarial training is clearly 
the most effective approach to building 
algorithmic defenses11. Adversarial training 
makes use of those adversarial examples 
produced by attack algorithms, which 
were successful in compromising a model 
during decision-boundary probing. 

Regularization: The predictive power of 
ML in production suffers when the model 
does not generalize well and only remem-
bers samples from training. Regularization 
offers a pathway to alleviate these short-
coming.  

Regularization for NN refers to the L1 
(Lasso) or L2 (Ridge) norm, where an 
additional term is added to the loss func-
tion to penalize a considerable number or 

substantial values of parameters. In terms 
of robustness, we adopt the more general 
definition of regularization as any tech-
nique that reduces overfitting. Regulariza-
tion is applied by modifying hyperparame-
ters, for example, by limiting the maximum 
depth of decision trees, triggering early 
stopping or prompting dropout layers in 
neural network or model pruning. 

Two caveats:  
1. �Excessive use of regularization can 

degrade predictive power due to 
over-simplification of the model, a  
scenario known as under-fitting. 

2. �Any of these approaches could result in 
a general degradation of performance 
(inherent to statistical approaches).

Paradigm shift: reactive to proactive  
Our interest in these methods is not to 
evaluate failures post-mortem, but to build 
models that are inherently robust before 
they are deployed. This avoids propaga-
tion of risk and unnecessary downstream 
costs. We propose a proactive strategy 
that integrates methods and associated 
metrics into a logical workflow. (We coded 
this methodology into a toolset to enable 
our ML engineers and auditors to pro- 
actively identify potential failure modes 
and resolve them in future model itera-
tions.) Our analysis is based on the same 
robustness criteria outlined above, oper-
ationalizing them in the context of the AI 
model assessment methodology:

1. �Reliability of specification: test-
ing whether the model functions as 
expected and solves the intended 
problem

 
2. �Stability of features: quantifying and 

categorizing the effect of feature space 
disruption on the model performance

 
3. �Resilience to edge-case vulnerabil-

ities: determining the effort required 
to undermine the model and deducing 
which samples are at risk through tar-
geted attacks 

Our interest in these 
methods is not to evaluate 
failures post-mortem, but 
to build models that are 
inherently robust before 
they are deployed.



5

Ensuring Reliable AI in Real World Situations

Reliability of specification
The first step is to specify the risk tolerance 
of the industry model application. Regu-
lated and high-risk applications, such as IRB 
risk models, usually require a strict quan-
titative model validation. Traditionally, we 
use performance metrics such as recall for 
classification or Root Mean Squared Error 
(RMSE) for regression to evaluate a model. 
A higher recall score or a lower RMSE would 
suggest a reliable model. Yet these metrics 
fail to address robustness. As illustrated 
in figure 1, a fraud detection model may 
have a high-performance metric score but 
generate little or no business value. This 
is because ML algorithms are designed to 
minimize errors (formulated by loss func-
tions), which makes them more prone to 
“adapt” to the majority class of non- 
fraudulent activities. 

In the illustration above, the desired out-
come of the ML algorithm is to produce 
decision boundary B (green line), where 
the number of misclassifications of fraud-
ulent activities is low and the number of 
misclassifications of non-fraudulent activ-
ities is high. This produces a higher error 
rate, because the number of misclassified 
non-fraudulent activities exceeds that of 
the misclassified fraudulent activities. To 
reduce the total number of misclassified 
samples, the ML algorithms will instead 
produce decision boundary A, where the 
number of misclassified points from both 
classes are approximately equal. This, 
however, yields more misclassified fraud-
ulent activities compared with boundary 
B, a more costly outcome. The chosen 
performance score, in this example, alone 
is sufficient to ascertain whether the model 
will provide relevant results in a real-world 
business context.

We evaluate model reliability on a more 
granular level by means of the following 
questions about prediction confidence12:

Fig. 1 – Decision boundary example

	• When the predictions are correct, how 
under-confident is the model?

	• When the predictions are wrong, how 
over-confident is the model?

Dedicated metrics answer these questions 
quantitatively and allow us to compare 
the confidence results with a benchmark 
model created for the task. The approach 
applies both to classification and to regres-
sion models. One of the advantages of 
AIQualify is that the user can specify what 
right or wrong is. Therefore, this is not 
“our” definition. At the time of this paper’s 
publication, our extensive research did 
not identify any application (neither open 
source nor proprietary) that illustrates the 
under/over-confidence concept to regres-
sion problems. We hope to inspire future 
work in this new field with our toolset.

Source: illustration
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Stability of features
The second step assesses model stability 
through an augmented form of Monte 
Carlo Simulation. In addition to conven- 
tional Monte Carlo simulations, we explore 
the connection between feature import-
ance and the inherent risk level of each 
feature. In the case of linear algorithms, the 
risk associated with a model feature is cor-
related to its importance, as high-ranking 
features tend to be the most disruptive.  
For more complex, non-linear algorithms 
such as neural networks or even tree- 
based algorithms, the relationship between 
feature importance and model disruption 
is not so straightforward. For example, we 
derive feature importance from the values 
of regression model coefficients in order 
to quantify their individual impacts on the 
final prediction result. There is no such 
directly attributable effect for tree-based 
models. It is still important to have a clear 
understanding of direct feature impact, 
because it gives us insight into the poten-
tial risk introduced by each feature. Our 
methodology quantifies the effect of the 
disruption and categorizes the features in 
line with the potential risks. This involves 
two levels of analysis:

1. �Individual disruption – features 
perturbed independently

 
2. �Collective disruption – a combination 

of features perturbed simultaneously

In the case of collective disruption, features 
that are not disruptive individually may 
become disruptive when combined with 
other variables. We must consider both 
individual and collective disruptions to 
ascertain which features (or their combi-
nations) will introduce persistent change 
in the model’s output in order to improve 
model performance.

Fig. 2 – AI Qualify User Interface

Source: AI Qualify
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Resilience to edge-case vulnerabilities
The third and final step evaluates and 
quantifies the effort required to undermine 
the target model. We utilize adversarial 
attack algorithms to estimate a lower 
bound of “effort” required for successful 
attacks. Conversely, we determine a veri-
fied robust upper bound of tolerable input 
deviation. Combining these steps is central 
to our methodology. Adversarial attacks 
are highly sensitive to the initial (user-de-
fined) threshold values, determining the 
amount of noise allowed in the attack 
algorithms. Threshold values drive the 
upper bound. 

However, robustness verification itself does 
not reveal any underlying drivers (e.g., noise 
vectors) that are important for addressing 
robustness issues. We compensate for 
this by combining adversarial attacks with 
robustness verification to understand the 
target model’s resilience in edge cases. 

When we integrate a noise correction 
algorithm13, we make sure it is compatible 
with tabular data that contains a mixture 
of numerical and categorical features, 
as commonly found in financial services 
databases. 

To make a comprehensive analysis of 
model resilience, we evaluate the model at 
multiple levels:

	• Prediction resilience – the “effort” 
required to undermine the decision in the 
model 

	• Adversarial examples – the adversaries 
produced by our methodology

	• Noise vectors – the noise generated to 
produce adversarial examples

	• Adversarial outcome – the results of 
testing, e.g., how the classification algo-
rithm reacts to targeted noise 

Measuring robustness effectively 
The most effective means to evaluate the 
robustness of ML models is by carefully 
combining complementary proactive and 
reactive strategies. We mapped the testing 
procedure in a workflow tool (“AI Qualify”) 
that helps users navigate the evaluation 
process, ensuring a consistent approach 
across model types and iterations. Our tool 
is based on the same robustness criteria 
introduced earlier: reliability, stability and 
resilience. 

We evaluate each of these from multiple 
angles and then consolidate them into a 
single score* for each criterion. The indivi-
dual “criterion scores” aggregate into an 
overall robustness score, which allows for 
quick comparison between competing 
models (champion-challengers) across 
different iterations of the same model. The 
topic-specific scores and underlying metrics 
invite users to delve into the detail, iden-
tifying the nature of the robustness prob-
lem and determining whether remediation 
actions is needed. 
 

The resilience score indicates how easily a 
model can be compromised. For example, 
we should reject a loan application model 
with a very low resilience score for the 
class “application declined”. Adversaries 
could easily hijack this model, changing its 
behavior to approve poor quality applica-
tions – potentially at great cost. We first 
pinpoint such vulnerabilities via adversarial 
examples, then utilize them to enhance 
robustness through adversarial training. 
The noise vectors and the adversarial 
outcome will also allow us to deduce which 
data samples are at risks:

	• Data points with imperceptible  
(small values) noise vectors

	• Data points with counter-intuitive noise 
vectors 

Imperceptible noise vectors are those 
close to the decision boundary, requiring 
little perturbation to be undermined. High-
lighting these data points is useful, because 
it shows how seemingly harmless data 
profiles can potentially break the model. 
Counter-intuitive noise vectors allow us 
to capture exceptions/edge cases to our 
models. Again, in the context of the loan 
application example, lowering a customer’s 
income should not change the loan applica-
tion outcome from “application declined” to 
“application approved.” 

* The metric ranges from 0 to 100 where higher is better 
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 "AI Qualify" adopts the reactive approach 
to drift detection – for both covariate shift 
and concept shift. The usual performance 
metrics (e.g., recall, precision, F1 score) 
can only capture model performance in a 
quantitative manner. Adding the robust-
ness metrics provides a more holistic view. 
We plot successive builds of models under 
investigation along a performance/robust-
ness plane. This is a convenient, intuitive 
way to visualize the trade-offs between the 
two characteristics, providing developers 
with quick feedback to model optimization 
efforts, in particular the effect of remedi-
ation actions (if any) across multiple itera-
tions. 

Fig. 3 – Model Robustness vs. Performance

Source: AI Qualify



9

Ensuring Reliable AI in Real World Situations

Conclusion
Robust AI models have never been more 
important, as AI goes mainstream and 
is deployed in ever more mission-critical 
applications. Based on our research and 
analysis, we conclude that:

Robustness is more than just a defense 
against adversarial attacks. More often 
than not, there is not a lone culprit for fragi-
lity in ML models. With many factors at play, 
it would be difficult to presume one is more 
significant than the other. We can observe 
this clearly along the entire model pipeline:

	• Data exploration – risk of non-repre-
sentative training data 

	• Training and validation – risk of overfit-
ting and under-specification

	• Monitoring – risk of model decay

The fact that all of these stages are inter-
connected suggests that there is no silver 
bullet, no one-size-fits-all solution for 
robustness. 

Both proactive and reactive approaches 
are critical to success. To craft ML models 
that are truly robust and reliable, we blend 
an ex-ante with an ex-post approach. 
Detecting (and monitoring) concept shift is 
fundamentally after-the-fact, yet it is also 
critically important to alert users about 
inevitable model decay. A uniquely ex-post 
approach puts us in a sub-optimal “wait-
and-see” posture that can be costly to 
business – especially in high-risk industries. 
A pre-emptive approach promises to alert 
users before risks become a problem, 
yet it cannot detect risks such as model 
decay.  Current proactive measures such 
as robustness verification are insufficient, 
even when paired with reactive monitoring. 

To create a strong robustness solution, we 
must adopt a comprehensive approach 
based on three fundamental perspectives:

	• 	Reliability of specification

	• Stability of features

	• Resilience to edge-case vulnerabilities

Properly applying and interpreting the 
many perspectives, methods, metrics, and 
tests discussed in this paper is a challenge 
in its own right. For this reason we organize 
them into workflows to ensure a sound, 
consistent assessment. "AI Qualify" gives 
developers and auditors the analytical 
tools they need to interpret results, devise 
remedies and monitor performance. It 
also helps document the validation pro-
cess, which is particularly important for 
regulated industries such as banking and 
insurance. 

We all have high expectations for AI. Tech-
nological advances and accumulation of 
success stories across domains give us 
good reason to do so. In many respects, 
however, current AI systems have a long 
way to go to earn our trust, especially in 
critical applications. 

Arguably the most crucial component to 
developing or maintaining an AI system is 
data, the foundation for modern AI. The 
ability of AI algorithms to extract rules from 
data give them unprecedented predictive 
capabilities, yet also pose additional chal-
lenges. All models – traditional or machine 
learning – can go astray with faulty pro-
duction data. The very nature of machine 
learning AI, deducing a function from trai-
ning data, introduces a new class of risk. If 
AI systems are built on faulty training data 
to begin with, they can fail even if they are 

later fed high quality production. AI sys-
tems trained only prior to launch can lose 
accuracy over time, becoming disconnec-
ted with the realities of an ever evolving 
world. At the other end of the spectrum, 
models that automatically update can be 
hijacked to behave in ways unintended by 
their developers. A system that is robust 
will guard against both of these risks and 
still remain a powerful predictive tool – 
whether as a decision aid or an automation 
enabler. This is what makes the difference 
between good AI and great AI. 
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