Fueling the future of mobility: hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

Hydrogen Articles Collection

Why does hydrogen stand out, among alternative energy sources, with regards to reducing greenhouse gas (GHG) emissions from heavy-duty long-haul mobility uses? How feasible and realistic is the short-term infrastructure deployment to comply with the EU emissions target for heavy duty vehicles? What is the competitiveness of hydrogen-powered trucks in the mid-term? What is the expected impact on GHG emissions? What are the investment requirements to activate the whole value chain?
Fueling the future of mobility: hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

Executive summary

The EU committed to reach carbon neutrality by 2050 to comply with the Paris Agreement and limit global warming below 1.5°C. Hydrogen is a major pillar of the strategy to address this challenge and is expected to attract major investments. Beyond overall GHG emissions reduction targets, the EU also set specific objectives for heavy-duty vehicles by 2030, setting a 30% fleet-wide average reduction target.

In the mid-term, Fuel Cell Electric Vehicles (FCEV) appear as a credible solution for carbon-free long-haul trucks:
- Most alternative technologies to ICE face technical challenges (autonomy, charging times, limited load for BEV; heavy infrastructure for catenary and induction systems; modest emissions savings for LNG/CNG),
- FCEV trucks cope with long-haul freight constraints, leverage a set of mature technologies and allow potentially significant GHG emissions reductions, as CCS combined with SMR process can capture up to 89% of CO$_2$ produced.

The adoption of FCEV trucks requires rapid albeit, realistic value chain activation:
- Several hydrogen plants (mainly SMR process) are close to TEN-T corridors, especially in 6 key countries (Fr, Ger., It., and Benelux). Further to fueling first FCEV trucks, such facilities are a platform for brownfield growth and CCS retrofit,
- Transport and storage technologies, in either liquid or compressed gaseous (up to 700 bars) forms, are currently well-known,
- Finally, a network of refueling stations will have to be deployed along Pan-European freight key routes (“TEN-T”) and major logistic hubs.

As of 2030, FCEV trucks are expected to become competitive against ICE ones:
- Purchasing cost decrease (from 300k€ down to 120k€ in 2030) will be driven by scale-up and standardization of FCEV truck construction technology,
- Fall in Operating costs will be mainly driven by H$_2$ delivered cost reductions and result in a 60% cost saving, reaching costs of less than $5 / kg of H$_2$ by 2030.

On the emissions front, FCEV vehicles will bring major improvements in CO$_2$ emissions, while staying at par with the best EURO 6 trucks on NOx: about 10-15% in the short term, then up to less 80% when CCS systems will be industrially deployed.

By 2030, a 10% “blue” hydrogen FCEV penetration rate for long-haul freight transport in 6 key EU countries, is achievable, although challenging:
- From a technical standpoint, this objective will require the deployment of 20 000 trucks, 600 refueling points and an additional production of up to 280kt H$_2$ p.a.
- Total CAPEX required is expected to range from €5b to €6b, a sizeable share of announced public investment, calling also for bold moves from private players (industrial gas producers, highway operators, truck manufacturers, O&G players, power & gas utilities).

By 2030, a 10% “blue” hydrogen FCEV penetration rate for long-haul freight transport in 6 key EU countries,
Fueling the future of mobility: hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

Hydrogen and long-haul freight emissions, two pillars of the EU carbon-neutrality strategy

The EU committed to reach carbon neutrality by 2050 to comply with the Paris Agreement and limit global warming below 1.5°C. Hydrogen is a major pillar of the strategy to address this challenge and is expected to attract major investments.

The EU roadmap for a sustainable transformation towards low-carbon economies (“the European Green Deal”) is being translated into national climate strategies. An intermediary milestone to reduce GHG emissions has been set by 2030 and relies on two key pillars:

• The decarbonation of all sectors with energy-efficient technologies
• Investments in alternative energy sources

Hydrogen stands out as a key pillar in this strategy.

Indeed, European countries recently presented their hydrogen strategies with billion euros investments, totaling up to ca. €45 - €50b by 2030 (out of €180 - €470b by 2050), and €25b for the France, Germany, Benelux and Italy subset of countries. The Covid-19 outbreak strengthened sustainability as a cornerstone of economic recovery and brought GHG emissions reduction back to the fore.

Figure 1.
European hydrogen strategies

European countries are putting hydrogen investments at the heart of their strategies to cut GHG emissions

Announced Hydrogen investments by 2030 (billions euros)

<table>
<thead>
<tr>
<th>Key 6 EU countries</th>
<th>25,1</th>
<th>9</th>
<th>9</th>
<th>9</th>
<th>7</th>
<th>7</th>
<th>0.1</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Italy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. €9b by 2040; 2. Investment plan presented by Northern Netherlands to the Dutch Parliament pending sign-off; 3. H₂ deployment is mainly financed by the private sector (e.g., Air Liquide); 4. Mainly driven by Snam
Sources: European Commission; OECD; Monitor Deloitte Analysis
**Beyond overall GHG emissions reduction targets, the EU has set specific 2030 objectives / targets for heavy-duty vehicles.**

Heavy-duty vehicles are major contributors to EU CO\textsubscript{2} emissions: about a quarter of road transport emissions and 5% of EU’s total emissions (150 Mt out of 3.1b tons in 2020\textsuperscript{1}). Therefore, the EU set a 30% fleet-wide average reduction target for heavy-duty vehicles (i.e., a volume of ca. 54M tons of CO\textsubscript{2} by 2030\textsuperscript{2}) and a minimum 2% share of zero or low-emission vehicles among new trucks.

The interim milestone applied to large lorries, with a 15% emissions reduction target by 2025, highlights the urgency to initiate the green transition for long haul road freight.

To coordinate the scattered development initiatives and to achieve public-funding targets, governments have set 2030 targets on the number of vehicles in hydrogen-powered fleets, while highlighting ambitions for the deployment of an end-to-end value chain.

**Figure 2. Emissions reduction ambition**

The EU set the first CO\textsubscript{2} reduction targets for heavy-duty vehicles by 2030, to curb road transport emissions

Heavy-duty vehicles are key contributors to CO\textsubscript{2} emissions, for which the EU targets a ~54 million tons CO\textsubscript{2} reduction by 2030 (CO\textsubscript{2} emissions - million tons CO\textsubscript{2})

Notes: 1. CO\textsubscript{2}: 80% of GHG; Heavy-duty vehicles: 5% of total EU emissions; 2. Vs. EU average in the reference period (1 July 2019–30 June 2020). Sources: European Environment Agency; Monitor Deloitte Analysis
**Fueling the future of mobility:** hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

**Figure 3.** European hydrogen strategies

European hydrogen strategies include key measures to accelerate the deployment of hydrogen mobility

Key measures of the deployment of hydrogen mobility

<table>
<thead>
<tr>
<th>Country</th>
<th>Germany</th>
<th>Netherlands</th>
<th>Spain</th>
<th>France</th>
<th>Portugal</th>
<th>Belgium</th>
<th>Italy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Production</strong></td>
<td>Construction of hydrogen production capacities (5 GW by 2030)</td>
<td>Construction of green hydrogen production capacities (4 GW) with electrolyzer</td>
<td>Construction of green hydrogen production capacities (4 GW) with electrolyzer</td>
<td>Construction of green hydrogen production capacities (6.5 GW) with electrolyzer</td>
<td>Construction of green hydrogen production capacities (1 GW) with electrolyzer in Sines for €3b</td>
<td>Studies for the construction of hydrogen production capacities</td>
<td>Investments in hydrogen production capacities</td>
</tr>
<tr>
<td><strong>Infrastructure</strong></td>
<td>Development of storage and charging infrastructure: €3.4bn by 2023</td>
<td>Development of underground hydrogen pipelines for €1.5b-2b</td>
<td>Installation of 100 hydrogen refueling stations</td>
<td>Installation of 400-1000 hydrogen refueling stations</td>
<td>Set-up of a H(_2) R&amp;D laboratory</td>
<td>Development of infrastructure along the value chain</td>
<td>Power-to-gas projects</td>
</tr>
<tr>
<td><strong>Uses</strong></td>
<td>Subsidies for clean vehicles purchase</td>
<td>H(_2)-powered vehicle targets: 15k FCEVs and 3000 heavy duty vehicles</td>
<td>H(_2)-powered vehicle targets: 150 buses, 5k light and heavy vehicles, 2 commercial train lines</td>
<td>H(_2)-powered vehicle targets: 20-50k light commercial vehicles and 800-2000 heavy-duty vehicles</td>
<td>Decarbonation of heavy transports</td>
<td>Decarbonation in the transport sector with green hydrogen</td>
<td>Decarbonation in the transport sector</td>
</tr>
</tbody>
</table>
FCEV, a credible technological pathway for long-haul trucks

Most alternative technologies to internal combustion engines (ICE) for long haul trucks face technical challenges:
- **Battery electric trucks** have limited autonomy (ca. 200 km) and require long charging times (ca. 8h), often overnight, while EU road freight is primarily long-distance (ca. 40% of total EU road freight - in km or t.km). Furthermore, the heavy battery weight reduces the available truck load (up to 20%, i.e. ~ 7 tons), another major drawback for long haul freighters.
- **Catenary or induction systems** require / necessitate large-scale infrastructure across the EU, whose upfront deployment in the short-term is unlikely.
- **Compressed and Liquified Natural Gas trucks (“CNG” / “LNG”)** are considered as the way forward by certain manufacturers, given their high technological maturity (8 to 9 Technology Readiness Levels).

However, the case for natural gas as a credible green energy source is still questioned:
- **GHG emissions reduction potential remains modest**: Manufacturers have estimated a 10-20% emissions cut compared to diesel vehicles. For example, Iveco claims that LNG-powered vehicles emit 10% less carbon. According to Scania, LNG trucks would reduce CO₂ emissions up to 20% vs. diesel vehicles. Volvo states that the new LNG model delivers a 20% CO₂ decrease on a tank-to-wheel basis.
- Recent independent studies demonstrated that NOx and SOx emissions are higher than diesel, contrary to truck manufacturers’ claims.

Figure 4.
Truck engine technologies
Fuel cell hydrogen is the most appropriate technology for green long-haul road freight, offering high autonomy and fast-charging time

Summary of current key truck engine technologies

<table>
<thead>
<tr>
<th></th>
<th>Internal Combustion Engine trucks (ICE)</th>
<th>Battery Electric trucks (BEV)</th>
<th>Fuel Cell Electric Trucks (FCEV)</th>
<th>CNG / LNG trucks</th>
<th>Catenary trucks / Induction charging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costs (as of 2020)</td>
<td>Capex (k€)</td>
<td>65</td>
<td>175-195</td>
<td>330</td>
<td>135-150</td>
</tr>
<tr>
<td></td>
<td>Maintenance costs (€/km)</td>
<td>0.15</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Energy</td>
<td>Energy consumption</td>
<td>33 L / 100 km</td>
<td>1.2-1.4 kWh / km</td>
<td>7.5 kg H2 / 100 km</td>
<td>30 kg / 100 km</td>
</tr>
<tr>
<td></td>
<td>Autonomy (km)</td>
<td>~700-1000</td>
<td>~350</td>
<td>~400 (Hyundai)-1200</td>
<td>~700-1000</td>
</tr>
<tr>
<td></td>
<td>Power (kW)</td>
<td>300</td>
<td>200-400</td>
<td>250-750</td>
<td>300-400</td>
</tr>
<tr>
<td></td>
<td>Charging time</td>
<td>10 min</td>
<td>8 hours</td>
<td>10-20 min</td>
<td>8 hours</td>
</tr>
<tr>
<td>Technology</td>
<td>Readiness Level</td>
<td>Level 9</td>
<td>Level 6-7</td>
<td>Level 6-7</td>
<td>Level 8-9</td>
</tr>
<tr>
<td>Product range</td>
<td>Current models</td>
<td>Daimler</td>
<td>Daimler E-Fusio Vision One</td>
<td>Hyundai Xcient</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volvo</td>
<td>MAN eTGM</td>
<td>Toyota Class 8 Fuel Cell</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iveco</td>
<td>Nikola, Esoro, Kenworth</td>
<td>Nikola, Esoro, Kenworth</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAN</td>
<td>• Volvo FH GNL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scania</td>
<td>• Scania GNL G340</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Iveco GNL Stralis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Siemens eHighway truck route system (Excluded given the large network infrastructure investment required)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sources: FCH; Transport & Environment; Monitor Deloitte Analysis
From a technical standpoint, FCEV trucks can cope with long-haul freight constraints, leverage a set of mature technologies, and allow potentially significant GHG emissions reduction:

- Hydrogen-powered trucks have been brought to the market that fulfill long haul freight needs and meet productivity constraints, with an autonomy above 400 km and a short refueling time of ca. 15 min. For example, Hyundai shipped the first 10 Xcient Fuel Cell trucks to Switzerland. The manufacturer plans to deliver 50 vehicles by the end of 2020 and roll-out 1600 Xcient trucks in total by 2025 globally. Hyundai is also developing a 1,000 km-autonomy truck on a single hydrogen fill-up. Furthermore, Nikola and Iveco are working on the “Nikola Tre” truck concept for European markets, with a target range up to 1,200km.

- Steam Methane Reforming (“SMR”) combined with carbon capture and storage technologies (“CCS”) can drastically reduce the GHG footprint of hydrogen production, capturing up to 89% of CO₂ produced. In the short-term, this method can be used to capitalize on existing SMR capacities and scale-up hydrogen production. The only major drawback in the mid-term will be the non-renewable nature of SMR-produced hydrogen, though.

- In the longer term, production process will shift from SMR to “green hydrogen”, as electrolysis reaches an industrial scale and becomes cost-effective (estimates below €2 / kg by 2025-2030), supported by European countries’ energy mix tilted towards renewables.
Fueling the future of mobility: hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

A foreseeable future

Pan-European freight relies primarily on long haul transport and is concentrated along key routes (Trans-European Transport Network called “TEN-T”) and logistics hubs. Furthermore, many existing hydrogen production sites are situated in close proximity.

Figure 5.

European road freight
A significant part of EU road freight is on long distance (~ 40%) 6 key countries (Fr, Ger, Benelux, It) represent 40% of this traffic

European road freight relies primarily on long haul transport...

Breakdown by distance travelled (billion km)

<table>
<thead>
<tr>
<th>Distance (km)</th>
<th>2000-6000</th>
<th>1000-2000</th>
<th>500-1000</th>
<th>300-500</th>
<th>150-300</th>
<th>50-150</th>
<th>&lt;50</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>142</td>
<td>38%</td>
<td>55,5</td>
<td>18,7</td>
<td>29,5</td>
<td>24,1</td>
<td>10,7</td>
</tr>
</tbody>
</table>

38% long haul
500 km threshold

Breakdown by distance travelled (billion km)

<table>
<thead>
<tr>
<th>Distance (km)</th>
<th>2000-6000</th>
<th>1000-2000</th>
<th>500-1000</th>
<th>300-500</th>
<th>150-300</th>
<th>50-150</th>
<th>&lt;50</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>1,822</td>
<td>42%</td>
<td>83</td>
<td>265</td>
<td>410</td>
<td>320</td>
<td>277</td>
</tr>
</tbody>
</table>

42% long haul

Sources: Eurostat; Monitor Deloitte Analysis

...driven by Germany and France

European road freight split by country (billion tons km)

Germany
France
Italie
Benelux
Others

40% Top 6 countries

2018

2018

2018

2018
Fueling the future of mobility: hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

Figure 6

European road freight and H₂ production facilities

In 6 key countries (Fr, Ger, Benelux, It) major traffic corridors (TEN-T) match with H₂ production locations

European road freight is concentrated on key traffic corridors and hubs...

Trans-European Transport Network (TEN-T) core corridors and logistic hubs...

...along which hydrogen production

Hydrogen production sites in Europe

Therefore, the integration of existing assets into an “end-to-end” hydrogen value chain should be assessed for short-term deployment, beyond the sole technical feasibility:

- **Hydrogen production** – especially merchant one – already exists in EU:
  - Industrial-scale SMR hydrogen production sites are already located close to the main European highways (TEN-T) and logistics hubs (particularly in France, Germany, Benelux and Italy, accounting for 40% of European long-distance traffic).
  - These facilities, if not directly supplying hydrogen to trucks because of market conditions and capacity constraints, can be a good foundation for further brownfield development and/or installation of CCS technologies.
  - Although alkaline and PEM electrolysis are mature technologies, required investments to scale-up capacities are currently still high and will only bring results in the long term.

- **Transport and storage technologies**, in either liquid or compressed gaseous (up to 700 bars) forms, are well-known as of today:
  - **Liquid hydrogen trailers** offer a much larger load carrying capacity than tube or container trailers with compressed H₂ (ca. 4.3t H₂ batches vs. 700kg of H₂ in a 500-bar trailer), which makes them an attractive transport option. Liquefying hydrogen for transport is more expensive, has lower conversion yields and requires long truck loading and unloading times (up to 3h – 3h30). Therefore, this option should be preferred only when production sites are not in proximity to refueling station.
  - **Hydrogen pipeline networks** are still at a nascent stage in Europe, with ca. 1600 km, led by Belgium (615 km), Germany (380 km) and France (300 km). Ongoing projects to blend H₂ with natural gas networks or to develop a dedicated hydrogen European backbone will foster its distribution scalability but are expected to be a credible Europe-wide option only by the 2030s.
  - **Tanks** are the most common hydrogen storage methods and should be the preferred option for an agile supply chain, as they are easy to implement with limited volumes, compared to underground geological caverns and reservoirs.

- **Distribution**: As a first step, a few refueling stations could be installed in key logistics hubs – truck refueling only takes 15-20 minutes and can be easily coordinated with loading and unloading operations.

Sources: EU regulation; CertifHy; Monitor Deloitte Analysis
**Figure 7.**

**Hydrogen value chain**

The “End-to-end” value chain must be activated in the short-term to initiate the transition towards FCEV long-haul heavy-duty vehicles.

**Hydrogen technologies along the value chain**

<table>
<thead>
<tr>
<th>Production</th>
<th>Conversion</th>
<th>Transportation</th>
<th>Storage and reconversion</th>
<th>Distribution</th>
<th>Hydrogen long haul road transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermochemical conversion</td>
<td>Gas compression</td>
<td>Compressed gas (CH₂)</td>
<td>Pressurized tanks</td>
<td>H₂ refueling stations</td>
<td>Hyundai XCient</td>
</tr>
<tr>
<td>• Steam Methane Reforming (SMR) + CCS</td>
<td>• Compressed Gaseous H₂ (15°, 350/700 bar)</td>
<td>• Pipelines</td>
<td>• Compressed or liquified hydrogen</td>
<td>• Toyota and Hino Class 8 Fuel Cell Electric Truck</td>
<td></td>
</tr>
<tr>
<td>• Coal Gasification + CCS</td>
<td>• Cryo-compressed H₂ (-235°, 300 bar)</td>
<td>• Tube trailers</td>
<td></td>
<td>• Nikola</td>
<td></td>
</tr>
<tr>
<td>• Concentration of Solar Fuels</td>
<td></td>
<td>• Container trailers</td>
<td></td>
<td>• Kenworth / Toyota T680</td>
<td></td>
</tr>
<tr>
<td>• Chemical looping (metal oxidation and reduction)</td>
<td></td>
<td>• Trains</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electrolysis</th>
<th>Liquefaction</th>
<th>Liquid gas (LH₂)</th>
<th>Geological storage</th>
<th>Cans</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Alkaline</td>
<td>• Liquid Hydrogen (-253°, 1 bar)</td>
<td>• Liquid trailers</td>
<td>• Underground salt caverns</td>
<td>• For hydrides</td>
</tr>
<tr>
<td>• Proton Exchange Membrane (PEM)</td>
<td></td>
<td>• Vessels</td>
<td>• Depleted oil and gas reservoirs</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microbial reaction</th>
<th>Solidification</th>
<th>Cans</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Microbial electrolysis</td>
<td>• Slush Hydrogen (-259°, 1 bar)</td>
<td>• For hydrides</td>
</tr>
<tr>
<td>• Dark fermentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemical combination</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Liquified Organic Hydrogen Carrier (LOHC)</td>
<td></td>
</tr>
<tr>
<td>• Ammonia</td>
<td></td>
</tr>
<tr>
<td>• Hydrides (e.g., bonding with metals)</td>
<td></td>
</tr>
</tbody>
</table>

**H₂ technologies to leverage to initiate hydrogen long haul transport deployment**

Technology Readiness Levels: 1-2 (Ideation) 3-4 (Lab / Demo) 5-6 (Prototypes) ≥7 (Industrialization)

**Sources:** IEA; CSIRO; Shell hydrogen study; Monitor Deloitte Analysis
A reasonable economic bet

In the mid-term outlook, cost savings driven by scale effects and technology improvements are expected to make FCEV trucks competitive vs. ICE counterparts.

In 2020, the TCO of FCEV trucks is estimated to be twice as high as conventional diesel trucks. This gap can be explained by two key factors:

- The CAPEX for a FCEV truck is currently estimated to be four times higher than that of a conventional ICE truck (ca. 300k€\(^\text{11}\) vs. 65k€\(^\text{11}\)), mainly due to energy components’ small-scale production (fuel cell, truck \(\text{H}_2\) storage tank) and significant mark-ups on non-energy and powertrain components. Over 300,000 trucks\(^{18}\) with a load capacity above 16t are sold in Europe each year, while Hyundai plans to deliver its 50 first FCEV trucks in Switzerland by the end of 2020. The small-scale production of components also impacts part replacement and maintenance costs.

- Current high fuel costs (above $10 / kg \(\text{H}_2\)) driven by high refueling station costs, also hamper FCEV trucks’ TCO.

- SMR-based hydrogen production is a well-known and widely deployed process, incurring a standard Levelized Cost of Hydrogen (“LCOH”) of ca. $1.7 / kg of \(\text{H}_2\), with limited cost improvement potential.

- Hydrogen transport costs are expensive due to the limited dedicated pipeline networks and the need for trailers (tube, container or liquid) to ship low-density hydrogen.

- Distribution costs account for the largest share of delivered costs (> $6 / kg \(\text{H}_2\)) driven by the expected small scale and low utilization of hydrogen refueling stations in the short-term.

![Figure 8.35 36](image)

**FCEV VS. ICE long haul truck face-offs : TCO**

FCEV trucks TCO expected to drop significantly and establish itself at par with ICE trucks by 2030

FCEV vs. ICE trucks TCO ($/100 km), at constant economic conditions*

<table>
<thead>
<tr>
<th>Year</th>
<th>ICE</th>
<th>FCEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>216</td>
<td>8</td>
</tr>
<tr>
<td>2020</td>
<td>126</td>
<td>9</td>
</tr>
<tr>
<td>2020</td>
<td>36</td>
<td>9</td>
</tr>
</tbody>
</table>

**Key assumptions**

- Source 2020 : Deloitte; Insurance & Misc. cost mid-term evolution aligned with vehicle cost
- Parts replacement cost mid-term evolution aligned with vehicle cost
- Fuel cell lifecycle : 25kh in 2020, 30kh by 2030
- Source 2020 : Deloitte; Maintenance cost mid-term evolution aligned with vehicle cost
- Insurance & Misc.
- Parts Replacement
- Maintenance Cost
- Labor cost
- Fuel Cost
- Purchase Cost

* 5 years average economic conditions as of Oct. 2020 (Diesel Price and € / $ exchange rate) Excl. Tolls & Taxe

Sources : IEA, CNR, FCH, Nikola, Transport & Environnement, ADEME, Volvo Trucks, Deloitte China / Ballard, Monitor Deloitte Analysis
Fueling the future of mobility: hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

By 2030, the TCO of FCEV long haul trucks will fall, in terms of both CAPEX and OPEX, to become at par with ICE trucks’ TCO (around $1.1+ / 100 km).

- On the one hand, CAPEX decrease will be driven by FCEV truck construction technology scale-up and standardization, lowering purchasing costs down to €120k in 2030:
  - A continuous decline of fuel cells systems costs is expected by 2030, from $1,500 / kW in 2020, down to $600 / kW in 2030. The fuel cell costs are primarily driven by high manufacturing costs, due to technological expertise requirements. This leaves significant room for future cost improvement and economies of scale. Some material costs are also expected to decline, with a reduced platinum demand from a current 0.4 – 0.5g / kW ratio to below 0.2g / kW in 2030.
  - Similarly, carbon fiber hydrogen storage tanks costs are expected to decline.

- The mark-up on propulsion agnostic components, due to lower economies of scale of FCEV production compared to ICE vehicles, is also expected to fall by 2030, as the production of FCEV trucks gains from enhanced scale and standardization.

- On the other hand, OPEX drop will be driven by hydrogen-delivered cost reductions and result in a 60% cost saving “at the pump” to less than $5 / kg of H₂ by 2030:
  - Although limited production cost improvements are expected, “blue hydrogen” costs (i.e., produced with the SMR process and carbon capture facilities) should decline and close the gap with “brown” sources.
  - The expansion of pipeline networks, either leveraging dedicated hydrogen networks or blending hydrogen into natural gas, will bring significant economies of scale vs. trailers and avoid expensive liquefaction.

- Scaled-up demand will trigger an increase in refueling stations’ size and utilization rate, driving hydrogen delivered cost reductions (up to 70% decrease). Further industrialization in manufacturing of station equipment could also bring incremental cost savings, although more significantly so for passenger cars than for long haul trucks.

- Maintenance and parts replacement costs will decrease in line with the increase of fuel cell system lifecycle, reaching 30,000 hours by 2026 vs. 25,000 hours currently.

In this document, our assessment is mainly technical. Indeed, the impact of potential public subsidies or taxes (e.g., CO₂ tax establishment in road transport, ban or specific tolls for ICE trucks, ...), as well as the variation in economic conditions (e.g., cost of hydrocarbons and diesel fuel, ...), on either FCEV or diesel vehicles, have not been quantified.

Figure 9. 42 44 45 46

FCEV VS. ICE long haul truck face-offs: H₂ delivered cost
Increase in stations utilization rates and deployment of pipe transport infrastructure will strongly decrease H₂ delivered costs

Hydrogen delivered costs up to trucks’ tank; 2020 – 2030 ($/kg)*

<table>
<thead>
<tr>
<th>Year</th>
<th>Refueling</th>
<th>Reconversion</th>
<th>Transport</th>
<th>Conversion</th>
<th>Production (Industrial Scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>11.2</td>
<td>6.9</td>
<td>2.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Mid-term (2030)</td>
<td>4.4</td>
<td>2.1</td>
<td>0.9</td>
<td>0.8</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- Source: US Department of Energy
  - Typical CAPEX: $4.8M over 15 years
  - Typical OPEX: Fixed ~0.28M$/year; Variable ~0.12M$/year

- Early market conditions: low utilization rate $110 kg / day (Allowing ~ 8 to 10 truck refueling / day / station)
- Assumed LHV transport by truck (~4.8 t H₂ load) over 200 – 300 km.
- Compressed gas would cost less (lower conversion costs), but appears less scalable; as a single trailer capacity is limited to 700 kg of H₂ at 500 bars (~29 Hyundai Xcient truck refueling cycles)
- Large-scale merchant production, SMR process (without carbon capture) ("Brown Hydrogen")
- Assumptions for Europe excl. Russia (Source: IEA Future of Hydrogen 2019): Natural Gas: 1.2345/kWh; OPEX: 0.175/kWh; CAPEX: 0.345/kWh

- Mature market conditions: high utilization $1100 kg / day (Allowing ~ 30 truck refueling / day / station)
- Gas transport by pipe (assuming necessary infrastructure)
- Assumptions for Europe excl. Russia (Source: IEA Future of Hydrogen 2019): Natural Gas: 1.2345/kWh; OPEX: 0.175/kWh; CAPEX: 0.345/kWh

- Gas conversion
- Large-scale merchant production, SMR process + CCS ("Blue Hydrogen"), assuming capture of CO₂ from SMR fuel gas using MEA (89% efficiency), closing the gaps with Brown Sources

*Assuming no cost of CO₂

Sources: IEA; US Department of Energy; Monitor Deloitte Analysis
A sizeable impact on GHG emissions

**FCEV long haul trucks will significantly contribute to the CO₂ emissions reduction effort, while not providing a significant edge on the NOx front.**

**CO₂ emissions**
- In the short term, and before combining SMR and CCS for production, the replacement of ICE vehicles by FCEV trucks fueled by “brown” hydrogen can cut CO₂ emissions by approx. 10% to 15%:
  - On the one hand, production-related emissions for FCEV trucks are slightly higher than for ICE trucks (150g / km for FCEV vs. 110g / km for a diesel articulated tractor with trailer system), due to additional carbon intensive components (i.e., fuel cell, carbon fiber hydrogen storage tanks and batteries)
  - On the other hand, real driving CO₂ emissions are lower, up to 20% depending on hydrogen distribution technology. The liquid hydrogen (“LH₂”) supply chain is hampered by lower conversion yields (max. 70-75%) in comparison with yields (up to 85-90%) of compressed gaseous hydrogen (“CH₃”).
- By 2030, CO₂ emissions of FCEV long haul freight transport are expected to significantly reduce (up to 80% vs. current “brown” hydrogen), driven by several factors:
  - The emergence of carbon capture and storage capacities (CCS) combined with SMR, is the most significant factor, as the CO₂ capture rate is estimated at 85-90%, with – in the long term – only modest “blue” hydrogen production costs increase vs. current “brown” processes.
  - The reduction of energy consumption in FCEV trucks is expected to reach 15%. Diesel trucks should experience a similar trend, as best-in-class lorries’ diesel consumption is expected to drop from 33 L / km, currently, to 28 L / km, under the same operating conditions.

**Technology improvements in FCEV trucks manufacturing** for all key components, such as batteries, platinum (e.g., mining footprint, platinum recycling, etc.) and carbon fiber used in storage tanks, could bring additional emissions cuts.
- In the longer term, the development of H₂ pipeline networks (either a dedicated H₂ backbone at EU scale, or by blending H₂ within natural gas networks) will reduce the need for LH₂ road distribution and related poor conversion yields.

---

**Figure 10.**

**FCEV VS. ICE long haul truck face-offs: CO₂ emissions over lifecycle**

Leveraging CCS technology could help reduce FCEV vehicles emissions by > 80% over lifecycle vs. ICE

**CO₂ emissions by technology over truck lifecycle; 2020 – 2030 (kg CO₂/km)**

- **ICE 2020 (Best Case)**
  - 1.32 kg CO₂/km
  - Diesel prod. & refining: 640g CO₂ / l
  - Truck consumption: 33L / 100km (Source Volvo Truck for 2020 new built state-of-the-art articulated Tractor + Trailer 40t)
- **FCEV 2020 No CCS**
  - 1.19 kg CO₂/km
  - Diesel combustion: 2640g CO₂ / l
  - Same as ICE + FCEV (190kW @ 16kg CO₂ / kW)
- **FCEV 2020 No CCS**
  - 1.03 kg CO₂/km
  - Hydrogen value chain
    - SMR process (no CCS): 9 kg CO₂ / kg H₂; incl. plant power (3%), and CH₄ upstream emissions (14%)
    - Liquidification losses: 25% + Compression losses: 15% + Transportation/storage losses: 10% + Consumption: 7.5 kg H₂ / 100 km
  - Same as ICE + FCEV (190kW @ 16kg CO₂ / kW)
- **FCEV 2030 (With CCS) Pipeline**
  - 0.88 kg CO₂/km
  - Hydrogen value chain
    - SMR process: 9 kg CO₂ / kg H₂
    - CCS efficiency: 89%
    - Compression losses: 15%
    - Transportation/storage losses: 10%
    - Consumption: 7.5 kg H₂ / 100 km
  - Same as ICE + FCEV (190kW @ 16kg CO₂ / kW)

*Assuming no cost of CO₂*
Sources: IEA; US Department of Energy; Fraunhofer Institute, Hyundai, Volvo Trucks, Linde Kryotechnik, Monitor Deloitte Analysis
Fueling the future of mobility: hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

NOx emissions

Even if there are no specific EU reduction targets for NOx, these emissions are closely monitored by truck manufacturers towards a green fleet transition. European Euro VI norms, endorsed in 2015, have set a maximum threshold for diesel NOx emissions at 180g / 100km. FCEV trucks, regardless of the hydrogen form used, are approximately at par with these emission levels.

Figure 11. FCEV VS. ICE long haul truck face-offs: NOx emissions over lifecycle

NOx emissions of FCEV vehicles (LH2, SMR + CCS) at par with Euro VI trucks CCS has a negative impact (+45-50%) on NOx emissions

NOx emissions by technology over truck lifecycle; (g NOx/100 km)* - Assuming hydrocarbon sourced H2, only

Sources: CGEDD, UK Department of Business, Energy & Industrial Strategy, Miller, Argonne National Lab, Monitor Deloitte Analysis
There is no such thing as a free lunch

By 2030, a 10% “blue” hydrogen FCEV penetration rate for long-haul freight transport in 6 key EU countries (France, Germany, Benelux, Italy), well-covered by both TEN-T corridors and industrial scale hydrogen production facilities, is technically achievable, although challenging:

- By 2030, assuming a +1.6% p.a. traffic growth, 20,000 FCEV trucks would be required to match with this ambition. This pre-requisite should be evaluated in the context of the following:
  - Yearly heavy-duty trucks market in EU: Each year, 300,000+ heavy duty trucks are sold in Europe. This would result in a ~7% average yearly market share for FCEV trucks over the period.
  - Country-by-country FCEV trucks penetration objectives: France announced an up to 2,000 heavy duty vehicles target, while Netherlands aims to have up to 3,000 heavy duty trucks on its roads in 2030.
  - Truck manufacturers ramp-up production capabilities: Hyundai aims at deploying 1,600 Xcient trucks by 2025 (starting from 50 in 2020). Most of major heavy-duty truck manufactures such as Toyota, IVECO / Nikola, MAN / Esoro, Scania / Renova and Asko also have projects, yet only under prototype development stage.

- The distribution infrastructure will also have to be developed Europe-wide:
  - If well-positioned on key logistic hubs and TEN-T corridors, approx. 600+ dedicated refueling stations will be necessary.

This can be compared to existing service stations networks: ESSO, Shell and Avia operate together ~ 800 stations on motorways in Europe, AS24, a fueling stations network dedicated to trucks operates ~ 1000 stations in Europe. France is the country with the most motorways stations (operated by all brands), i.e., approx. 440 stations.

- Assuming LH₂ distribution by trucks (as pipe networks would not reach adequate scale and maturity by 2030), a fleet of 140 trucks + trailers will be necessary to feed refueling stations.
  - The 20,000 FCEV trucks would use 190kt of H₂, which would make necessary to produce up to 280kt out of plants because of liquefaction and distribution yields (3% of 9.8Mt EU-28 yearly H₂ production). Assuming there will be not much spare H₂ production capacity, this would require the equivalent of an additional ~10 production facilities, average industrial scale production facilities currently ranging usually between 50 and 200 tons / day. However, this should be assumed a conservative assumption, as some spare capacity could be leveraged to initiate the transition towards hydrogen-powered mobility.

By 2030, a 10% blue hydrogen FCEV penetration rate for long-haul trucks, would result in 20,000 FCEV fuel trucks, 600+ refueling stations, 140 trailers for logistics and 280kt production capacity.
Fueling the future of mobility: hydrogen and fuel cell solutions for heavy duty long-haul freight transportation

However, there is no such thing as a free lunch: ca. €5b to €6b investments will be required to deploy the hydrogen infrastructure necessary for long-haul traffic and strive towards GHG reduction ambitions.

- Approximately half of the CAPEX (€2.7b) will be dedicated to deploying the network of refueling stations, as well as the necessary LH₂ transportation trucks.
- The other half will be dedicated to production facilities, with a very significant part of it for liquefaction plants and loading terminals (€1.6b over €2.9b industrial CAPEX). This is assumed to be an upper boundary, as either compression technology and/or pipelines could be leveraged in relevant areas.
- Such figures represent ~20 – 25% of total investments announced by the 6 priority countries (Fr, Ger, It, Benelux). Therefore, private investments from gas industry and energy incumbent competitors should be leveraged to fully grasp the available funds for deployment.

As a matter of comparison, €600M p.a. of CAPEX would represent ~10% of combined yearly CAPEX of Air Liquide and Linde, the leading merchant H₂ producers in EU (In 2019: €3.2b. resp. $2.6b)⁶⁶. Other mobility players, such as vehicle manufacturers, highway operators, oil & gas players and power & gas utilities are also expected to engage into bold moves.

In terms of CO₂ emissions, 10% “blue” hydrogen FCEV penetration rate for long haul freight transport in 6 key EU countries would allow to switch 2.5b km distance covered by ICE trucks to FCEV vehicles. This would result in 2.5M tons of avoided CO₂ p.a., i.e., approximately 4 - 5% of the total heavy-duty vehicles GHG emissions target. Assuming CAPEX depreciation over 15 years, and operating costs at par with ICE vehicles, this would imply a rather high CO₂ avoidance expense of ~ 150 € / ton.

However, there is no such thing as a free lunch: ca. €5b to €6b investments will be required to deploy the hydrogen infrastructure necessary for long-haul traffic and strive towards GHG.

---

**Figure 12.**

**Necessary investments by 2023**

A total of ~5B€ CAPEX will be necessary to deploy the H₂ infrastructure necessary to fuel 10% of long-haul traffic in Top 6 EU areas*.

**Infrastructure CAPEX necessary to shift 10% of long-haul traffic (€ over 2020 - 2030) – Assuming a SMR + CCS + LH₂ value chain**

<table>
<thead>
<tr>
<th>CAPEX (B€)</th>
<th>5.61</th>
</tr>
</thead>
<tbody>
<tr>
<td>~610 Stations</td>
<td>2.57</td>
</tr>
<tr>
<td>~140 Trucks</td>
<td>0.13</td>
</tr>
<tr>
<td>~ 190 kt H₂ p.a.</td>
<td>1.34</td>
</tr>
<tr>
<td>~ 280 kt H₂ p.a.</td>
<td>0.56</td>
</tr>
<tr>
<td>Unit CAPEX : 2,000 €/t.year</td>
<td></td>
</tr>
<tr>
<td>Unit CAPEX : 2,500 €/kg.day for an industrial scale liquefaction unit (100 to 200t.day range)</td>
<td></td>
</tr>
<tr>
<td>Conversion / distribution losses (Liquefaction : 75%; Distribution : 10%)</td>
<td></td>
</tr>
<tr>
<td>Source : US Department of Energy / NREL; Assuming scale ratio on CAPEX of 0.85 when size doubles</td>
<td></td>
</tr>
<tr>
<td>Source : AMEC Foster Wheeler / IEA Greenhouse Gas R&amp;D Programme</td>
<td></td>
</tr>
</tbody>
</table>

Distribution
- Distribution stations
- Trucking

Production
- Loading terminals
- Liquefaction
- CCS
- H₂ (SMR)

*Germany, Benelux, France, Italy

Sources: AMEC Foster Wheeler; IEA Greenhouse Gas R&D Programme; US Department of Energy / NREL; University of California (Institute of Transportation Studies); Monitor Deloitte Analysis
The way ahead

In this document, we have demonstrated how FCEV can address the GHG emissions reduction challenge for long-haul trucks in Europe by 2030.

Nevertheless, several major uncertainties persist:

• Despite being a credible technological solution – allowing production of H₂ at competitive costs with drastically reduced GHG emissions thanks to CCS – “blue” hydrogen is still a non-renewable energy resource, as it relies on CH₄ feedstock.

• Therefore, only the deployment of “green” processes (e.g. electrolysis) will provide fuel to trucks with a sustainable path, in the future. This option is however subject to many questions:
  - What is the likelihood of deploying electrolysis at large scale with competitive costs in the near future?
  - Which operating models will be most suitable (industrial scale vs. distributed electrolysis)?

• How to integrate electrolysis with countries’ electrical mix strategies to leverage low-cost renewable power?

• Value chain activation strategies will require both public and private stakeholders to coordinate in order to fund and operate end-to-end value chains, emphasizing the need for building winning business models.

Value chain activation strategies will require both public and private stakeholders to coordinate in order to fund and operate end-to-end value chains, emphasizing the need for building winning business models.
Glossary

**CCS:** Carbon Capture and Storage

**CH₂:** Compressed Hydrogen

**CNG:** Compressed Natural Gas

**FCEV:** Fuel Cell Electric Vehicle

**GHG:** Green House Gas

**ICE:** Internal Combustion Engine

**LCOH:** Levelized Cost of Hydrogen

**LH₂:** Liquid Hydrogen

**LNG:** Liquid Natural Gas

**PEM:** Proton Exchange Membrane

**SMR:** Steam Methane Reforming

**TCO:** Total Cost of Ownership

**TTW:** Tank to Wheel

**WTT:** Well to Tank
Future of Mobility Contacts

Olivier Perrin  
Partner  
Energy, Resources & Industrials  
Monitor Deloitte  
France  
operrin@deloitte.fr

Guillaume Crunelle  
Partner  
Automotive Leader  
Deloitte  
France  
gcrunelle@deloitte.fr

Alexandre Kuzmanovic  
Director  
Energy, Resources & Industrials  
Monitor Deloitte  
France  
akuzmanovic@deloitte.fr

Jean-Michel Pinto  
Director  
Energy, Resources & Industrials  
Monitor Deloitte  
France  
ejepinto@deloitte.fr

Caroline Law-Kam  
Senior Consultant  
Energy, Resources & Industrials  
Monitor Deloitte  
France  
clawkam@deloitte.fr

Harsha Eashwer Singhraj  
Manager  
Energy, Resources & Industrials  
Monitor Deloitte  
France  
heashwersinghraj@deloitte.fr
References

1. https://ec.europa.eu/eurostat/statistics-explained/pdfscache/1180.pdf, assuming CO₂ accounts for 80% of GHG emissions
10. https://www.mobilitah2.it/plan
Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited ("DTTL"), its global network of member firms, and their related entities. DTTL (also referred to as "Deloitte Global") and each of its member firms are legally separate and independent entities. DTTL does not provide services to clients. Please see www.deloitte.com/about to learn more. In France, Deloitte SAS is the member firm of Deloitte Touche Tohmatsu Limited, and professional services are rendered by its subsidiaries and affiliates.

Deloitte is a leading global provider of audit & assurance, consulting, financial advisory, risk advisory and tax & legal services. With 312,000 professionals in 150 countries, Deloitte has gained the trust of its clients through its service quality for over 150 years, setting it apart from its competitors. Deloitte serves four out of five Fortune Global 500® companies.

Deloitte France brings together diverse expertise to meet the challenges of clients of all sizes from all industries. Backed by the skills of its 6,900 employees and partners and a multidisciplinary offering, Deloitte France is a leading player. Committed to making an impact that matters on our society, Deloitte has set up an ambitious sustainable development and civic commitment action plan.

Deloitte
6, place de la Pyramide – 92908 Paris-La Défense Cedex
© 2020 Deloitte Monitor. A Deloitte network entity