WE ARE VERY GOOD SUITED TO HELP CLIENTS THROUGHOUT THE RCA JOURNEY

Deloitte’s competency

Team experiences in:
- RPA End-to-End delivery across industries.
- Supporting customer with RPA crossover to cognitive projects
- Cross geographical implementations (utilizing Deloitte Firm network)

Variety of RCA projects already delivered:
- Potential assessment
- PoC
- SW selection and implementation
- Scoping & Process automation delivery
- Training
- project QA

RPA SW vendor independent

Skilled to deliver in leading RPA and Cognitive SW

Business process knowledge across functions and industries

Tax	Legal	Audit
Risk | RCA | BPO
--- | --- | ---
Analytics | ICT | Digital
--- | --- | ---
Cross Industry
What is Robotic Process Automation (RPA)?

RPA is not

- Walking, talking auto-bots
- Physically existing machines processing paper
- Artificial intelligence or voice recognition and reply software

RPA is

- Computer coded SW
- Programs that replace people performing repetitive rule-based tasks
- Cross-functional and cross-application macros

RPA is the application of technology that allows employees in a company to configure computer software or a “robot” to **capture and interpret existing applications** for processing a transaction, manipulating data, triggering responses and communicating with other digital systems.

Human operations are supported with Robots. Its **“training” and configuration is under Business control**. This allows dramatically shortened the time between the identified need for process change and its realization is – its in matter of hours.

The robot is capable of **any rule-based activity** in any system – ERPs, mainframe, web-based, Citrix and more.
EVERY CLIENT IS UNIQUE AND VALUES RPA’S BENEFITS DIFFERENTLY - RPA IMPLEMENTATION STRATEGY EASILY ADOPTS TO THIS

Benefits of Using RPA

- Turn-around-time decrease (up to 80%)
- People do not have to waste time on routine tasks
- Robots have their own access to the UI, the process is not changed, data are stored and processed where they were before
- Quality goes up typically to 99.5 (depends on % of cases covered by RPA), all RPA errors (exceptions) are systematic
- ISO and auditing purposes logs, all details, what credentials, which values were put where, what documents were touched
- ~30% costs reduction is a safe estimate
- Increasing number of robotic workers by license, changing work through the control center
- Machine is does not need to sleep or take a breaks
RPA EXECUTES PROCESSES AND ACCESSES SYSTEMS JUST LIKE AN EMPLOYEE WOULD

Summary

Software, commonly known as a ‘robot’, is used to capture and interpret existing applications to enable interaction across multiple systems in a non-invasive way.

Multiple robots can be seen as a virtual workforce – a back-office processing centre at scale without the human resources.

Quick to implement and payback – mimics human processing and minimizes the need for costly systems integration.

What Robotics can do?

RPA

- Opening email and attachments
- Logging into web/enterprise applications
- Moving files and folders
- Copying and pasting
- Filling in forms
- Reading and writing to databases
- Scraping data from the web
- Extracting structured data from documents
- Connecting to system APIs
- Making calculations
- Collecting social media statistics
- Following “if/then” decisions/rules
Hiring a robot is very similar to hiring a person, except the robot is consistent in quality and always follows instructions.

Model case – work by 3 FTEs compare to RPA robot

<table>
<thead>
<tr>
<th>Human</th>
<th>Robot (RPA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hire a person</td>
<td>Procure license</td>
</tr>
<tr>
<td>Create standard human user IT account</td>
<td>Create standard human user IT account</td>
</tr>
<tr>
<td>Assign access rules to the IT account</td>
<td>Assign access rules to the IT account</td>
</tr>
<tr>
<td>Prepare human user PC</td>
<td>Prepare human user PC</td>
</tr>
<tr>
<td>Install SW for work</td>
<td>Install SW for work</td>
</tr>
<tr>
<td>Train user</td>
<td>Install robotic SW to the user PC</td>
</tr>
<tr>
<td>Assign work to human</td>
<td>Assign work to robot</td>
</tr>
</tbody>
</table>

Introducing RPA to an Organization - Onboarding

- The Robot is capable of processing the cases in the same way as a person, though it is usually (at least) 3 times faster or more and delivers consistent quality.
- The Robot is capable of processing work before employees arrive and after they leave = The robot can operate 24/7 if allowed by the application’s business hours.
- Company gains at minimum 2FTEs available for other tasks.

Human processing

<table>
<thead>
<tr>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
<th>Case 5</th>
<th>Case 6</th>
<th>Case 7</th>
<th>Case 8</th>
<th>Case 9</th>
<th>Case 10</th>
<th>Case 11</th>
<th>Case 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td></td>
</tr>
<tr>
<td>10:00</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td></td>
</tr>
</tbody>
</table>

Robot

- Case 1
- Case 2
- Case 3
- Case 4
- Case 5
- Case 6
- Case 7
- Case 8
- Case 9
- Case 10
- Case 11
- Case 12

+ cases in remaining working day time available
TECHNOLOGY EVOLUTION

- **1921**: "Robot" used for the 1st time (Karel Čapek – R.U.R.)
- **1944**: ENIAC
- **1950s**: 1st high-level programming language Fortran
- **1970**: Process improvement starts to be emphasized
 - Automation
 - MRP, TQM
 - Statistická kontrola procesu
- **1978**: Kurzweil Computer began selling 1st commercial version of OCR computer program
- **1986**: Bill Smith introduced Six Sigma.
- **1990s**: Process Reengineering
 - Computers, SW and other automated systems are started to be used for improving quality and cost reduction
- **1991**: Visual Basic
- **1997**: Computer won Chess against Garry Kasparov
- **2000s**: BPM 1st implementation in BPO & SSC Scorecards
- **2001**: publication of the Agile Manifesto
- **2010**: RPA technology expansion
- **2011-14**: Siri, Watson, Alexa
- **2014**: Industry 4.0
- **2025**: 1/3 of jobs will be automated
- **2025**: 1/3 of jobs will be automated
AI WE ALL ARE LOOKING FOR

- Chatbots
- Machine learning
- Natural Language understanding
- Named Entity Recognition
-

Trendy
Scientific
Mysterious
Maturing
Can do single task:
- Rule-based AI
- AI Translations
- Go / Chess AI

We are here

Orchestration of narrow AI:
- Smart homes
- Self-driving cars

Human-level

Narrow AI

Expanded AI

General AI
Example on Claim Process

1. Receive e-mail
2. Understand content
3. Lookup information
4. Answer e-mail
EXAMPLE ON CLAIM PROCESS

<table>
<thead>
<tr>
<th>RPA</th>
<th>ML-AI</th>
<th>Custom SW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Receive e-mail</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Understand content</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lookup information</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Answer e-mail</td>
<td></td>
</tr>
</tbody>
</table>

Example e-mail:

Hejtmánek, Jan (CZ - Prague)

Invoice issue

To: Hejtmánek, Jan (CZ - Prague)

Please, confirm if you received our invoice number TH1235453 for $500. We are waiting since 28.10.2016 for the payment.

Thank you,
Annoyed client

See more about Hejtmánek, Jan (CZ - Prague).
DEMO
Claim handling
DEMO TIME
DEMO TIME

RPA

Rule-based actions and decision
Narrow AI

Example-based rules and decisions
Narrow AI

Template

Custom Software
Narrow AI

Expanded AI

AI

ERP

CRM
SUCCESSFULLY SCALING-UP AUTOMATION

1. Embrace what you have
Make sure you know what you have today at your disposal, what functionalities you have.

2. Grow-up what you have
Be a pro at RPA, make sure you can run short projects with loosely defined goals.

3. Get your data together
For machine learning you need data, lots of it. The data needs to match.

4. Join the forces
Business, IT, Security, Compliance, CxO – they all need to know what you pursue and how.