
Your bad requirements 
are costing you money
Author: Anjalie Rajkumar
January 2022

Deloitte Quality and Test Engineering | White Paper



2

Quality and Test Engineering | Your bad requirements are costing you money

On a Thanksgiving episode of Friends, Rachel famously tries her hand at making a Thanksgiving 
trifle. But alas, with two pages of the recipe book stuck together, Rachel unknowingly combines 
half a trifle and half a shepherd’s pie. 

Requirements are misconstrued in everyday life—in this instance it only cost Rachel her 
reputation as a “chef”, but requirement issues on your next programme will cost a lot more.

Bad requirements are everywhere
I’m a Quality Engineer (for those of you stuck 
in the dark ages, that means tester). Don’t 
click off the article just yet, I promise it’s 
worth the read.

As a Quality Engineer, I’m used to continually 
finding myself in situations on programmes 
where my team is pushed for time, close 
to launch date and with a list of critical 
outstanding defects growing by the day. This 
happens frequently enough, but on a certain 
engagement that we found ourselves on a few 
years ago, frustration levels were high among 
the testers, clients, and leadership. We found 
defect after defect and were inching closer 
and closer to our Go-Live date. An estimated 
19 hours per day were spent addressing 
requirement-related defects, across the 
50-person team, approximately 4,800 hours 
per year. This factors in the time spent on 
activities such as raising, reviewing and 
resolving requirement-related defects.

When raised with some colleagues at Deloitte 
Quality & Test Engineering (QTE), we observed 
that testers spent a significant proportion 
of their time clarifying requirements—an 
additional role on top of testing. This 
requirements clarification was conducted 
often when BAs had rolled off projects, 
original documentation had been archived 
in an unknown location, and when project 
timelines were at their tightest.

Does this sound familiar to you? Bear with 
me here, this isn’t another shift left paper, we 
aren’t arguing that testing earlier will fix this, 
we are proposing something else.

It’s very common on programmes to see 
Requirements/User stories as the root 
cause for a significant proportion of defects. 
According to Crosstalk, the Journal of Defense 
Software Engineering, “most failures in 
software products are due to errors in the 
requirements and design phases—as high 
as 64 percent of total defect costs” (Figure 1). 
This could be attributed to ambiguous, stale/
out of date requirements and/or technical and 
business requirement mismatches.



3

Quality and Test Engineering | Your bad requirements are costing you money

Origin of software defects 
(Source: Crosstalk, the Journal of defence 
software engineering)

Figure 1

Coding/ 
implementation

36%
Requirement 
analysis and 
design phase

64%

So, we know that requirements defects are 
prevalent on projects, but does that matter? 

Bad requirements cost money 
In the example above, we estimated that the 
project could have saved 10% of their annual 
testing spend through eliminating defects 
posed by poor or dated requirements. We’re 
not alone in believing that significant money is 
wasted on fixing defects later in the software 
development lifecycle. 

According to the Systems Sciences Institute 
at IBM, it is 15 times more expensive to fix a 
defect in Testing than in Design (Figure 2).

Relative costs to fix software defects 
(Source: IBM systems sciences institute)

Figure 2
100x

15x
6.5x

1x
Phase/stage of the S/W development in which the 
defect is found

Furthermore, a publication from NASA 
highlighted the potential for cost escalation 
throughout the project life cycle, citing “the 
cost of fixing a requirements error discovered 
during the requirements phase is defined 
to be 1 unit... at the integration and test 
phase, the cost to fix the error becomes 
21—78 units” (Haskins et al., 2004).

There is a clear consensus that finding 
Requirements defects later in the project 
lifecycle leads to notable costs (though the 
exact order of magnitude is up for debate), 
not to mention wasted time. 

How do we fix that?



4

Quality and Test Engineering | Your bad requirements are costing you money

Prevention is better than cure
There are various approaches to improving 
the overall delivery approach. We see many 
concentrating on “reviewing” each phase of 
the lifecycle, with a view to increase efficiency. 
Even with programmes using an Agile delivery 
approach, utilising sessions like “3 amigos” 
without proper frameworks, we still see 
significant defects. 

Author, Dr Joe Marasco, cites that once 
a formal requirements document has 
been produced, of any kind, stakeholders 
lose engagement and won’t read/update 
when changes need to be made (see 
Figure 3). This isn’t limited to a standard 
waterfall Requirements Document, this also 
includes formalising user stories as tickets 
on JIRA, for example. It applies to Agile 
ways of working too.

Figure 3 

Start Kickoff Elicitation Validation Publication

En
er

gy

Therefore, it becomes apparent that the right 
time to intervene for maximum impact is 
during the Requirements Elicitation phase. 

So, what do we know so far?

1.	 We know Requirements contribute 
to a large proportion of defects on 
a programme. 

2.	 We know that the cost of finding defects 
increases exponentially as we progress 
through the project lifecycle.

3.	 We know the best time to engage parties 
for Requirement clarification is during the 
elicitation phase.

4.	 We know principles of Shift Left static 
analysis are helpful, but don’t offer a 
complete solution.

Introducing the Requirements Engineer
We hypothesised that bringing on a tester 
to “quality assure” requirements/user 
stories through the requirements gathering/
discovery phase, would enable testing to 
have an input into user stories much earlier 
in the process and would allow us to consider, 
from the earliest stages, the testability of said 
user stories.

It was a nice theory, but would it work? How 
would we measure the benefit? How would it 
work with various delivery models? 

So, we took it upon ourselves to try it. 
We found ourselves a willing Public Sector 
(Agile) project and we conducted an as-is 
analysis to understand the proportion of 
defects attributed to poor requirements. 
Here are the stats: 



5

Quality and Test Engineering | Your bad requirements are costing you money

Proportion of requirement-related 
defects by Root Cause 
(before and after a Requirements Engineer)

Figure 4

Before RE

8%
8%
7%

2%
0%
2%

Requirement

Test data and 
test scripting

Design issue

After RE

The statistics were compelling.

In 6 months, the Requirements Engineer 
had implemented processes to ensure the 
information passed to the test team was clear 
and testable. In turn, this enabled test scripts 
to be generated efficiently and improved the 
quality of the solution. 

Could BAs not do this themselves? 

BAs and Testers play two different roles 
in a delivery programme. They are two 
different types of people for a reason; it’s 
not necessarily reasonable that BAs should 
anticipate everything a tester might need for 
a successful test, and like with any message, 
things get lost in translation. 

However, that doesn’t mean we can’t 
invest in setting up processes between 
BAs, Devs and Test teams to clearly 
communicate expectations of, and quality 
check, requirements, with a view to remove 
the Requirements Engineer once their 
work is done.

Alternatively, we can retain the Requirements 
Engineer for the duration of the programme, 
whilst the BAs roll off/move onto other 
projects—this ensures continuity without 
ringfencing BAs for the entire lifecycle. 

Tried and Tested
Testers by nature, we sought another project, 
this time, in Financial Services (specifically, 
Banking). We used a similar approach to the 
Public Sector project, varying slightly based 
on team size and platform complexity. We 
successfully reduced testers’ time spent on 
clarifying requirements from 30% to 10% 
of their day. 

After our initial success, we decided to 
embed ourselves further into the project. 
We managed to streamline the 3 amigos 
process, establishing what a successful 3 
amigos looks like so all parties know what 
the expected standard of a requirement 
should be. As result of this, we improved 
the communications, traceability and overall 
efficiency of requirement analysis. 



6

Quality and Test Engineering | Your bad requirements are costing you money

Since then, we have also used Requirements 
Engineering on another Public Sector project, 
this time for two months to implement 
processes to enable better communication 
and traceability between teams. In addition, 
we are also showcasing our practitioners’ 
subject matter expertise on another 
Financial Services project, this time Wealth 
Management. The benefit of bringing on 
a Requirements Engineer with industry/
technology expertise at project conception 
ensures robust requirements and continuity 
right to the point of implementation. 

What this means for you
Let’s return to our first example—the 
(Waterfall) transformation programme. The 
poor/out of date Requirements cost the 
programme 10% of their annual Test spend. 
For a similar engagement, net the cost of two 
Requirements Engineers, the programme 
can save approximately 6% of the annual 
test spend per year if we commit to reducing 
(not eliminating) said requirements by just 
50%. In some cases, this could amount 
to a six-figure saving. That feels like a 
worthwhile investment.

For those wanting to invest in improving 
processes in the long term, a Requirements 
Engineer can be integrated into the 
programme for the duration of the project 
lifecycle to assess, implement and enforce 
better practices. Whilst this would require the 
biggest investment, it would ultimately lead to 
the largest cost saving.

For those who are looking to reap benefits in 
the shorter term, a Requirements Engineer 
can be brought onto the programme for a 
negotiable fixed period, conducting a review 
and implementing process improvements 
to then hand over to the programme 
team to enforce. 

Lastly, for those who want a light touch 
approach, a Requirements Engineer can 
provide coaching and a checklist for a 
limited period, providing you with a toolkit 
to implement better practices within 
your programmes. 



7

Quality and Test Engineering | Your bad requirements are costing you money

Beyond FTE savings, there are subsequent 
positive externalities of introducing a 
Requirements Engineer. For example, 
the consequential savings of reducing 
the timeline of a project. In addition, 
Requirements Engineering can also help 
bring Environmental, Social and Governance 
(ESG) considerations to the forefront of 
your delivery. Investing in a Requirements 
Engineer will set up Requirements to be in a 
fit state prior to the Testing phase, thereby 
reducing the amount of time required in Test 
Environments. Reduced time in Environments 
leads to a lower carbon footprint and more 
sustainable working practices. 

Ultimately, Requirements Engineering will 
improve the E2E efficiency of the delivery 
lifecycle. By quality assuring Requirements, 
we will reduce cost, increase quality, and cut 
down time to market. In a world where so 
much of our inefficiency is attributed to poor 
requirements, Requirements Engineering 
is the next logical step in improving all our 
delivery models.

Thanks for sticking with me, if you want to 
explore more feel free to reach out to me 
or anyone in our leadership team (we love 
a good debate): 

Nicholas Yap
Mimi Taylor 
Anjalie Rajkumar 

References: 
Segue Technologies. (2014). The Rising Costs 
of Defects. [online] Available at: https://
www.seguetech.com/rising-costs-defects/ 
[Accessed 1 Nov. 2021].

Haskins, B., Stecklein, J., Dick, B., Moroney, 
G., Lovell, R. and Dabney, J., 2004. 8.4.2 Error 
Cost Escalation Through the Project Life Cycle. 
Nasa Technical Reports—INCOSE International 
Symposium, 14(1), pp.1723-1737.

StickyMinds. (n.d.). What Is the Cost of 
a Requirement Error? [online] Available 
at: https://www.stickyminds.com/
article/what-cost-requirement-error 
[Accessed 1 Nov. 2021].

https://www.seguetech.com/rising-costs-defects/
https://www.seguetech.com/rising-costs-defects/
https://www.stickyminds.com/article/what-cost-requirement-error
https://www.stickyminds.com/article/what-cost-requirement-error


This document is confidential and it is not to be copied or made available to any other 
party. Deloitte LLP does not accept any liability for use of or reliance on the contents of 
this document by any person save by the intended recipient(s) to the extent agreed in a 
Deloitte LLP engagement contract. 

If this document contains details of an arrangement that could result in a tax or National 
Insurance saving, no such conditions of confidentiality apply to the details of that 
arrangement (for example, for the purpose of discussion with tax authorities). 

Deloitte LLP is a limited liability partnership registered in England and Wales with 
registered number OC303675 and its registered office at 1 New Street Square, London 
EC4A 3HQ, United Kingdom. 

Deloitte LLP is the United Kingdom affiliate of Deloitte NSE LLP, a member firm of 
Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"). 
DTTL and each of its member firms are legally separate and independent entities. DTTL 
and Deloitte NSE LLP do not provide services to clients. Please click here to learn more 
about our global network of member firms. 

© 2022 Deloitte LLP. All rights reserved. 


