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Abstract—Machine learning has helped advance the field of
anomaly detection by incorporating classifiers and autoencoders
to decipher between normal and anomalous behavior. Addition-
ally, federated learning has provided a way for a global model to
be trained with multiple clients’ data without requiring the client
to directly share their data. This paper proposes a novel anomaly
detector via federated learning to detect malicious network
activity on a client’s server. In our experiments, we use an
autoencoder with a classifier in a federated learning framework to
determine if the network activity is benign or malicious. By using
our novel min-max scalar and sampling technique, called FedSam,
we determined federated learning allows the global model to
learn from each client’s data and, in turn, provide a means for
each client to improve their intrusion detection system’s defense
against cyber-attacks.

Index Terms—anomaly detection, federated learning, intrusion
detection systems, autoencoder

I. INTRODUCTION

As cyber-attacks continue to evolve, the intrusion detection
systems (IDS) used to detect these attacks need to stay up to
date. To stay ahead of the attackers, companies should use the
most advanced technology and work together in a way that
allows them to contribute their insights in a secure manner.

Our federated learning (FL) anomaly detection approach
provides a method for a company to detect intrusion attacks
while simultaneously contributing their insights to a global
model without sharing their individual network activity. In
a federated framework, the machine learning (ML) model is
deployed and trained on individual systems, and the weights
from the trained model are aggregated in a global model [1].
In turn, the global model will continue to adjust based on
the newly added weights and learn how to handle new data.
When paired with network anomaly detection, companies can
continuously share their insights and help the model learn to
detect more attacks.

Initial attempts at adopting FL in IDS have shown positive
improvements. However, one of the key challenges while
building an IDS is handling heterogeneous data distribution
across multiple organizations [2]. In this paper, we will discuss
some challenges that hamper interoperability of models across
organizations and how FL can be used as a bridge to overcome
these challenges. We propose training an autoencoder and
classifier using our novel FL min-max algorithm and sampling
technique called FedSam.

The paper is structured as follows. First, we cover the
background information for anomaly detection, autoencoders,
and FL. Next, we discuss previous research related to our
topic. Then, we describe the data sets used in our experiments,
followed by the methods that lead to our anomaly detector via
FL. After the methods, we discuss our experimental design and
the results. We conclude with our final thoughts and our plans
for future research.

II. BACKGROUND

A. Autoencoders and Anomaly Detection

Autoencoders are one of the most popular neural network
architectures for unsupervised anomaly detection [3]. A simple
autoencoder comprises of an encoder block (one or more layer
of neurons), a bottleneck (typically a layer with fewer neurons
than the encoder) and a decoder block (same characteristics
as the encoder), where the overall objective is to minimize
the reconstruction loss when an input is passed through this
network. Through this objective, the bottleneck layer of the au-
toencoder is able to capture the most representative features in
a lower dimensional space. When an anomalous input is passed
through an autoencoder trained on normal data, the reconstruc-
tion of the input is poor resulting in large reconstruction error.
By establishing a threshold on the reconstruction error, an
autoencoder can be used for the detection of anomalous inputs.
In an IDS, attacks are sparse and benign traffic is abundant.
Autoencoders can be trained to learn diverse benign traffic
and minimize the average reconstruction loss [4]. Since the
autoencoder has never encountered attack data during training,
the reconstruction loss from attack data is typically higher than
the reconstruction loss from benign data. The threshold is the
line that separates the two types of reconstruction losses such
that the amount of benign data above the line is minimized
and the amount of attack data above the line is maximized.

B. Federated Learning and Anomaly Detection

Traditionally, ML modeling techniques have relied on cen-
tralizing data from multiple sources into a single data center
to train models. However, data about different types of in-
trusion attacks are rarely located at one organization. Often,
attackers target multiple organizations, and the attack data
is spread across them. Considering the sensitive nature of
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network related data, many organizations may find it chal-
lenging to share data for training ML models. Consequently,
these organizations end up with an ML model that does not
achieve its maximum potential. To resolve this issue, FL
can be implemented. FL is a decentralized collaborative ML
technique [1]. Instead of aggregating data to create a single
ML model, models are trained iteratively at every node, and
the model parameters from each node are fused together using
FL fusion algorithms [1].

FL is often implemented with a central FL server node
orchestrating training rounds over multiple participating client
nodes. At the beginning of each training round, the FL
server shares a global FL model with each client node. Upon
receiving the global FL model, each client runs ML training
over the client’s local data. These clients then send the updated
model with learned parameters back to the FL server for
aggregation. The FL server collects all the updates and fuses
them by using one of the FL fusion algorithms. FedAvg is one
of the pioneering fusion algorithms [5]. Using FedAvg, the
global model update is obtained by the weighted average over
all the parameters of each client model [5]. This completes
one training round. Several training rounds are orchestrated by
the FL server until the desired performance is achieved. This
helps to ensure that client data never leaves its source location,
and it allows multiple client nodes to collaborate and build a
common ML model without directly sharing sensitive data.

III. LITERATURE REVIEW

With the constant advancements of ML techniques and
the increased availability of intrusion detection data sets,
researchers have been setting out to improve upon the current
IDS. The variety of methods used to detect anomalies with
ML have provided insights about the challenges of dealing
with cyberattack data as well as possible solutions to overcome
them.

The Canadian Institute for Cybersecurity 2017 Intrusion De-
tection System (CIC-IDS2017) and Canadian Institute for Cy-
bersecurity 2018 Intrusion Detection System (CIC-IDS2018)
data sets contain labeled network activity data for benign
and malicious behavior [6] [7]. Given the CIC-IDS data
sets contain labeled data, a classification model is a logical
approach to determine whether the data are benign or mali-
cious. Zhou and Pezaros experimented with using 6 different
types of classification models on the CIC-IDS2018 data set to
determine if the data are ‘evil’ or ‘benign’ [8]. The experiment
initially tested each model on individual attacks, but in the
final experiment the team used a decision tree classifier with
each of the attack types grouped together as ‘evil’ data [8].
The decision tree had an f-1 score of 1.0 detecting benign
data and 0.57 detecting the attack data [8]. The classifier had
great results with detecting one type of attack, but it becomes
increasingly difficult to differentiate between attacks as more
types are added.

Although classification models have shown to be a viable
approach, autoencoders have been very successful at detecting

anomalies. Hindy et al. conducted an experiment on the CIC-
IDS2017 data set using an autoencoder with various threshold
levels [4]. The autoencoder was trained using benign data so
that the reconstruction loss would be higher when process-
ing attack data. With the optimal threshold, the autoencoder
had the following accuracies:90.01%, 98.43%, 98.47%, and
99.67% for DoS GoldenEye, DoS Hulk, Port Scanning, and
DDoS attacks [4]. These results are very promising, but
the varied accuracies based on the different threshold levels
highlights the importance of using an optimal threshold.

In another experiment, Li combines the autoencoder and
classifier approaches to detect the attacks [9]. To start the
process, the normal data is sent through the autoencoder for
dimensionality reduction [9]. The data is then fed into a dense
neural network that consists of 4 layers and an output layer
for binary classification [9]. The classifier’s predictions were
then used to train and test a decision tree [9]. Along with
Li’s experiment, Rezvy et al. followed a similar approach
using an autoencoder and a classifier [10]. The difference,
however, is Rezvy et al. use the autoencoder to minimize the
reconstruction error [10]. The reconstruction error is then used
as the input data for the classification model [10]. The results
from this experiment are very promising, and the idea to use
a classifier along with the autoencoder is a possible solution
to finding the optimal threshold level.

In “Chained Anomaly Detection Models for Federated
Learning: An Intrusion Detection Case Study”, Preuveneers et
al. built autoencoder based intrusion detection models using
the CIC-IDS2017 data set [11]. They partitioned data into
12 parties based on internet protocol (IP) addresses of victim
machines. The autoencoders were trained using only benign
traffic from the first day of CIC-IDS2017 simulations. In the
experiments, the authors varied the number of parties from 1
to 12. 1 represented the central training and 12 represented
the extreme case where each victim machine is a separate FL
party [11]. They observed that FL setups with more parties
required more epochs for the model to converge. In their
results, they claim that it took around 20 epochs for the central
model to converge while the 12 party FL setup took around
50 epochs [11]. While more epochs are needed, the amount of
time for each epoch reduces as each party trains local models
in parallel.

In “Federated Learning for Malware Detection in IoT De-
vices”, Marmol Campos et al. worked with malware detection
using the N-BaIoT IOT dataset [5]. They described and
compared two variations of FedAvg algorithm: Mini-Batch
Aggregation and Multi-Epoch Aggregation. In Mini-Batch
Aggregation, data at party nodes are grouped into mini-batches
for each FL round. Only a single mini-batch is used for
training, and the updated model parameters are sent back to
the FL server [5]. This process is repeated until all mini-
batches are covered. In Multi-Epoch Aggregation, the received
model is trained for multiple epochs using all the available
data at a party node before sending model updates back to
the server [5]. They described that an FL model trained with
mini batch aggregation converges better than the multi-epoch



aggregation [5]. One potential drawback of the multi-epoch
aggregation approach is that model parameters in each FL
round get optimized for a party node’s local data as opposed
to global training data.

Another important contribution mentioned in paper “Feder-
ated Learning for Malware Detection in IoT Devices” by Vale-
rian Rey et al. [1] was calculating the min-max pre-processing
scalar using a collaborative normalization algorithm. They
suggested that training a common autoencoder with a global
min-max is very important. They proposed an algorithm where
each party node shares their min-max values with the FL
server, and the FL server calculates the global min-max pre-
processing scalar [1]. They mentioned that this algorithm
has a drawback of each client leaking exact values for each
feature to the FL server, which creates a security threat to the
client’s data. In addition, as they used the autoencoder with a
threshold as an anomaly detector, they needed to calculate the
global threshold across multiple parties’ data. They propose
federating local thresholds, which requires each party to share
their local threshold to the FL server where they are averaged
as the global threshold.

Studies in FL have analyzed how the choice of FL algo-
rithms affect training in IID (Identical and Independent) and
Non-IID data distribution settings [12]. In Non-IID settings,
mini-batch aggregation can lead to better convergence, how-
ever, it has a major drawback of being network in-efficient. In
“Federated Multi-Mini-Batch: An Efficient Training Approach
to Federated Learning in Non-IID Environments”, Bakhtiari et
al. suggested a new algorithm termed as FedMMB (Federated
Multi-Mini-Batch) [12]. This algorithm helps to overcome the
challenge of network in-efficiency by training only on a subset
of batches in every FL round. The number of batches used in
every round is defined by a hyper-parameter, and these group
of batches are run in an ordered sequence during successive FL
rounds. Once all batches are completed, client data is shuffled
and new batches are created [12]. This approach does help
in aiding convergence, however, in case of dis-proportionate
training data, this algorithm could allow clients to train for
different amounts of epochs.

We used the insights and findings from each of these papers
to help form our anomaly detector via FL. The research
conducted before led to us researching ways to handle dif-
ferent data distributions, obtain a difficult threshold level, and
account for different client sizes in FL.

IV. DATA SETS

The CIC-IDS2017, CIC-IDS2018, National Collegiate Cy-
ber Defense Competition (NCC-DC), and MAWI-Lab data sets
were used to evaluate the anomaly detector via FL approach.
The CIC-IDS2017 and CIC-IDS2018 datasets were created
by the Canadian Institute for Cybersecurity (CIC), and they
contain labeled network data for both benign and cyber-attacks
[6] [7]. The NCC-DC data set was created for the National
Collegiate Cyber Defense Competition where Deloitte was one
of the sponsors. It is important to note that only the sections
the authors were involved with were used from the NCC-DC

dataset [13]. Lastly, the MAWI lab data set is a database of
benign activity [14].

The CIC-IDS2017 dataset resembles real world network
activity data (PCAPs) for benign and malicious behavior [6].
It is broken into 5 csv files, and each file contains 80 features
describing the activity as well as a label to indicate if the
activity is benign or one of the following attacks: FTP-Patator,
SSH-Patator, DoS Slowloris, DoS Slowhttptest, DoS Hulk,
DoS GoldenEye, Heartbleed Port 444, Web Attack – Brute
Force, Web Attack – XSS, Web Attack - SQL Injection,
Infiltration, Exploit, Botnet, Port Scan, and DDoS LOIT [6].

Similar to the CIC-IDS2017 data set, the CIC-IDS2018 data
set is broken into 10 csv files [7]. Each file contains 80 features
captured from the network traffic and system logs of 420
machines and 30 servers [7]. Additionally, the network traffic
is labeled as either benign or as one of the following attacks:
Brute-force FTP-Patator, Brute-force SSH-Patator, DoS Attack
Hulk, DoS Attack Slowloris, DoS Attack GoldenEye, DoS
Slowhttptest, DoS Attack Heartleech, Web Attack DVWA,
Web Attack XSS, Web Attack Brute-force, Infiltration Attack,
Botnet Attack, DDoS LOIC for UDP, DDoS LOIC for TCP,
and DDoS LOIC for HTTP Requests [7].

The next data set used was the section of the NCC-
DC data set where the authors were responsible. It contains
the same 80 features as the CIC-IDS data sets along with
the attributes capturing the source port, and the source and
destination IP addresses. The data set Deloitte had access to,
had labeled network activity for benign and the following
attack types: Scanning, Interrogation, Command and Control,
and Exfiltration [13].

The last data set used was from the MAWI-Lab in Japan.
The data set contains 66 features, all of which are a subset of
CIC-IDS/NCC-DC datasets, along with the attributes capturing
the source port, source and destination IP addresses [14]. For
evaluation purposes, we gathered a weeks’ worth of data from
MAWI-Lab and processed it to fit the format of the CICIDS
and NCC-DC datasets. The dataset contains 1,500,000 data
points, and considering the dataset is a collection of real traffic
events and attacks are very rare in the real world, we have
assumed the data points are benign.

V. METHODS AND TECHNIQUES

This section of the paper will cover how the structure of the
autoencoder and classifier as well the FL model architecture.

A. Autoencoder and Classifier Setup

The initial experiments were conducted using an undercom-
plete autoencoder with a root mean square propagation opti-
mizer and mean squared error loss function. The autoencoders
in these experiments were trained using benign data from the
CIC-IDS2018 dataset and tested with benign and malicious
data.

As more attack types were passed through the autoencoder,
it became increasingly difficult to determine a threshold that
separated benign from malicious data. For this reason, a
classifier was paired with the autoencoder to eliminate the



Fig. 1. Auto-Encoder and Classifier Block Diagram

need for a threshold [9] [10]. The autoencoder was trained with
benign data as mentioned in the previous paragraph. However,
instead of setting a threshold level to classify the data, the
reconstruction loss from the autoencoder was used to train
a binary classification model. Using a balanced amount of
benign and malicious data, the reconstruction loss produced
from the autoencoder was used as the input data to train the
sequential binary classifier. The classifier used a SoftMax acti-
vation function, Adam optimizer, and categorical cross entropy
loss function. Additionally, the benign data was labeled as
‘0’ and all attack types were labeled as ‘1’ for training. The
structure for the combined autoencoder and classifier is shown
in figure 1.

Additionally, we trained the model with 75 features from
the CIC-FlowMeter. Dst Port, Timestamp, Flow Byts/s, Flow
Pkts/s and Labels were the only features from the CIC-IDS
dataset that were left out of the training data. Adding extra
features for training did not reduce the model performance,
and it even helped detect more types of attacks.

B. Federated Learning Setup

In our federated setup, we trained the autoencoder and
classifier mentioned in the above section in a 3-step process.

1. The FL server sent the autoencoder to each client to
be trained with their own benign data. Each client
then sent the weights back to the FL server to be
aggregated.

2. Each client used the global FL autoencoder to create
training data for the classifier by running raw inputs
over its local data and saving the reconstruction loss
vectors for each data point.

3. The FL server sent the classifier model to each client
and each client used their data from step 2 and their
data labels to train the classifier. The weights from
the trained model were then sent back to the FL
server to be aggregated.

Throughout the process, only the model parameters are sent
to the FL server. None of the actual data from the client leaves
the client’s server. At the end of these three steps, we obtained
a single global pair of an autoencoder and classifier.

Once the basic FL architecture was complete, we worked on
handling clients with different data distributions. To do this,
we introduced a novel global FL min-max scalar algorithm
and a sampling technique we call FedSam.

The novel min-max scalar works as follows. The FL server
obtains a list of the IP addresses of the connected client nodes
and initializes a min-max scalar object with random minimum
and maximum values for each feature used to train the models.
The FL server then randomly selects an IP address from the list
and shares the initial min-max scalar with the client. That IP
address is then deleted from the list. Once the client receives
the min-max scalar, the client node will validate if its data
is within the bounds of the min-max scalar. If it is within
the bounds, the client node will not make any changes to the
min-max scalar. If there are any values outside the bounds,
the client node will update that specific feature with their
value. When the value has been updated, the client node will
randomly select another IP address from the list, send the
min-max scalar to the next client and delete the IP address
from the list. The next client will repeat the same exact steps
as the previous client. This process will continue until every
client has had a chance to update the min-max scalar. Once
the process is complete, the common min-max scalar will have
the minimum and maximum values for each feature. This min-
max scalar will then be sent out by the FL server to each client
to scale the data.

Our federated aggregation strategy - FedAvg with sampling,
called FedSam, is a combination of Mini-Batch and Multi-
Epoch FedAvg strategy, and it is well suited for giving equal
weight to updates from all client nodes. Multi-Epoch strategy
averages model parameters in each round after training for
one or more epochs of client data while single Mini-Batch
strategy averages after one single mini-batch of client data
and continues sequentially. With FedMMB , they introduce
a hyper-parameter which is count of mini-batches to train
over in a single FL round and continue sequentially. In
FedSam we improve on FedMMB and introduced a hyper
parameter called sampling size replacing the batch count, and
the sampling size is a number of data points which will be
used for training in each round. Sample size is batch size
multiplied by batch count in each round. We observed that



in FedMMB, there is some variation in the number of data
points used in FL rounds when training with clients that have
data imbalances. As its a weighted average, this might offset
overall training of the FL model. Furthermore, as FedMMB
executes in sequence, extreme data imbalance will translate
to some clients completing multiple epochs while others only
complete one epoch.

For example, with FedSam if there are 100k rows of data,
we could set the sampling size to be 5000 and batch size to
be 20. This means, for 1 epoch, the 100k rows of data will
be processed by the model in batches of 20 in each FL round.
When used with 2 clients with different amounts of data, each
client will train on the same amount of data in each FL round.
As an example, if client 1 had 100k rows of data and client 2
had 30k rows of data, we would set the sample size to 5000
and batch size to 20. Each client would then sample 5000
data points from their dataset in each FL round. This method
ensures every client uses the exact same amount of data to
train their model and prevents one client from having too much
influence on the global model over FL training rounds.

VI. EXPERIMENTAL DESIGN

Once our anomaly detector via FL was solidified, we
conducted multiple experiments to determine the effectiveness
of the model. We have organized our experiments in manner
that build on one another to highlight the usefulness of our
final FL model.

The experimental goals are listed below.

1. Create benchmark results using central models
2. Demonstrate the effectiveness of our novel min-max

scalar and sampling technique in an FL set up
3. Compare FedSam to FedMMB
4. Test our FL model on unknown data

For experiments A through C, we used the CIC-IDS2017,
CIC-IDS2018, and NCC-DC datasets. The training and testing
splits for each dataset are shown in table I.

A. Central Models

Our first set of experiments test how centrally trained
autoencoders and classifiers fair against a global dataset. Three
of the central models were trained individually with either the
CIC-IDS2018, CIC-IDS2017, or NCC-DC dataset and tested
with a combination of all three datasets. The results from these
models are used to help highlight the advantage for clients to
use FL.

The fourth central model was trained with data from the
CIC-IDS2018, CIC-IDS2017, and NCC-DC datasets, and it
was tested using a combination of all three datasets. The
results from this model serve as a theoretical benchmark for
an all inclusive central model that we can use to compare to
our federated model.

The structure of the models trained and tested is shown in
the table II.

Data Autoencoder
Training Split

Classifier
Training
Split

Testing

CICIDS2017

Benign Ex:
1136538

Attack Ex:
0

Benign Ex:
61000

Attack Ex:
60400

Benign Ex:
8000

Attack
Ex:
8000

CICIDS2018

Benign Ex:
2279560

Attack Ex:
0

Benign Ex:
23375

Attack Ex:
23375

Benign Ex:
8000

Attack
Ex:
8000

NCC-DC

Benign Ex:
79848

Attack Ex:
0

Benign Ex:
10000

Attack Ex:
10000

Benign Ex:
8000

Attack
Ex:
8000

TABLE I
TRAINING AND TESTING SPLITS FOR EACH DATASET IN EXPERIMENTS

A-C

Model Training Data Test Data

1 CICIDS2018
NCC-DC
CIC-IDS2017
CIC-IDS2018

2 CICIDS2017
NCC-DC
CIC-IDS2017
CIC-IDS2018

3 NCC-DC
NCC-DC
CIC-IDS2017
CIC-IDS2018

4
NCC-DC
CIC-IDS2017
CIC-IDS2018

NCC-DC
CIC-IDS2017
CIC-IDS2018

TABLE II
CENTRAL MODELS

B. Novel Min-Max Scalar and FedSam

Our next experiment was conducted to show that our min-
max algorithm and sampling technique are effective methods
to handle convergence issues when clients have different
amounts of data. We trained a 3-party federated model using
data from the NCC-DC, CIC-IDS2017, and CIC-IDS2018
data sets where each party used a min-max scalar relevant to
their own data. Then, we trained another 3-party model with
the same set up, but we used our novel min-max algorithm.
Finally, we trained another 3-party model with the same set
up, but we used our novel min-max algorithm with FedSam.
The results were used to show the effectiveness of our novel
min-max scalar and sampling technique.



Model Clients Technique

1
Client 1: CIC-IDS2018
Client 2: CIC-IDS2017
Client 3: NCC-DC

Individual
MinMax Scalars

2
Client 1: CIC-IDS2018
Client 2: CIC-IDS2017
Client 3: NCC-DC

Novel MinMax
Scalar

3
Client 1: CIC-IDS2018
Client 2: CIC-IDS2017
Client 3: NCC-DC

Novel MinMax
Scalar and
FedSam

TABLE III
MIN-MAX AND FedSam EXPERIMENTS

C. FedSam vs. FedMMB

Our next experiment compared the optimized FL model
using our novel min-max algorithm and our FedSam algorithm
to an FL model using our novel min-max algorithm and
the FedMMB algorithm. We trained two separate federated
models using 3 clients with the CIC-IDS2017, CIC-IDS2018,
and NCC-DC datasets. We then used FedMMB on the first
federated model and FedSam on the second federated model.

Model Clients Algorithm

1
Client 1: NCC-DC
Client 2: CIC-IDS2017
Client 3: CIC-IDS2018

FedMMB

2
Client 1: NCC-DC
Client 2: CIC-IDS2017
Client 3: CIC-IDS20188

FedSam

TABLE IV
FedMMB AND FedSam EXPERIMENTS

D. Unknown Data

Our final experiment tested our optimized FL model on
unknown data sets. The models were trained with 3 clients
using three of the following datasets: CIC-IDS2017, CIC-
IDS2018, NCC-DC, or MAWI-Lab. The model was then tested
with the entire dataset not used to train the model. The training
splits for CIC-IDS2017, CIC-IDS2018, and NCC-DC are the
same as shown in table I. MAWI used 59,138 benign examples
to train the autoencoder.

It is important to note the MAWI dataset does not have at-
tack data, so it only participated in the FL for the autoencoder.
See table V.

VII. RESULTS

Our results show the novel min-max scalar algorithm,
sampling technique, and FL method are effective solutions to
build a secure and collaborative IDS. The results from the
experiments are shown in the subsections below.

A. Central Models

The experiments with the central models are the bench-
mark performances to compare to our federated model. The
individual model’s results show that an individual IDS has a
limited scope of attacks it can detect. However, as shown in

Model Clients Test Data

1
Client 1: CIC-IDS2018
Client 2: CIC-IDS2017
Client 3: NCC-DC

MAWI

Benign Examples: 1,500,000
Attack Examples: 0

2
Client 1: Mawi-Lab
Client 2: CIC-IDS2017
Client 3: NCC-DC

CIC-IDS2018

Benign Examples: 2,218,562
Attack Examples: 1,623,490

3
Client 1: CIC-IDS2018
Client 2: MAWI-Lab
Client 3: NCC-DC

CIC-IDS2017

Benign Examples: 1,105,164
Attack Examples: 526,203

4
Client 1: CIC-IDS2018
Client 2: CIC-IDS2017
Client 3: MAWI-Lab

NCC-DC

Benign Examples: 24,000
Attack Examples: 431,870

TABLE V
FL EXPERIMENTS WITH UNKNOWN DATA

the upcoming sub-sections, we can expand the scope by using
a globally shared FL model.

Additionally, the fourth model which was trained using all
three datasets serves as a theoretical benchmark. These results
could only be achieved if each client decided to store their
data together on a central network.

The results from the experiments are shown in table VI.
They include precision, recall, f1 score, accuracy, and the
confusion matrix for the following models.

1. Trained using CIC-IDS2018 data
2. Trained using CIC-IDS2017 data
3. Trained using NCC data
4. Trained using all three data sets
Each model was tested using a combination of benign and

attack data from the CIC-IDS2017, CIC-IDS2018, and NCC-
DC datasets shown in table I.

Model Data Pre-
cision Recall F1

Score
Confusion
Matrix

1 Benign 0.69 0.71 0.70 [16985,7015]

Attack 0.70 0.69 0.68 [7509,16500]

2 Benign 0.66 0.53 0.59 [12674,11326]

Attack 0.61 0.73 0.66 [6587,17413]

3 Benign 0.39 0.31 0.34 [7352,16648]

Attack 0.43 0.52 0.47 [11506,12494

4 Benign 1.00 0.99 0.99 [23831,169]

Attack 0.99 1.00 0.99 [119,23881]

TABLE VI
CENTRALLY TRAINED MODELS

B. Novel Min Max Scalar and FedSam

In these experiments we compared the results of an FL
model using individual min-max scalars to an FL model using
our novel min-max scalar and to an FL model using our



novel min-max scalar with FedSam. The results demonstrate
the effectiveness of using our novel min-max algorithm and
FedSam. Additionally, these models were trained for 200
rounds since the models without FedSam take much longer
to train. Below are the clients used in each model.

1. Client 1 trained using CIC-IDS2018 data
2. Client 2 trained using CIC-IDS2017 data
3. Client 3 trained using NCC-DC data

Client Data Pre-
cision Recall F1

Score

Confusion
Matrix

1 Benign 0.84 0.64 0.72 [15330,8670]

Attack 0.71 0.88 0.78 [2977,21023]

2 Benign 0.65 0.70 0.67 [16778,7222]

Attack 0.67 0.62 0.64 [9153,14847]

3 Benign 0.62 0.72 0.67 [17327,6673]

Attack 0.67 0.55 0.60 [10729,13271]

TABLE VII
FL MODELS WITH INDIVIDUAL SCALARS

Model Data Pre-
cision Recall F1

Score

Confusion
Matrix

1 Benign 0.92 0.80 0.86 [19138,4862]

Attack 0.82 0.93 0.87 [1574,22426]

TABLE VIII
FEDERATED MODEL RESULTS USING OUR NOVEL MIN-MAX SCALAR

Model Data Pre-
cision Recall F1

Score

Confusion
Matrix

1 Benign 0.94 0.87 0.91 [20935,3065]

Attack 0.88 0.95 0.91 [1303,22697]

TABLE IX
FEDERATED MODEL RESULTS USING OUR NOVEL MIN-MAX SCALAR AND

FedSam

C. FedSam vs. FedMMB
Using our optimized FL model, we compared the effective-

ness of our FedSam algorithm to the FedMMB algorithm. In
this experiment, we trained two separate federated models with
3 clients using the CIC-IDS2017, CIC-IDS2018, and NCC-DC
datasets. To keep it consistent, each model was trained for
5,000 rounds and used our novel-min max algorithm. FedSam
and FedMMB are both viable algorithms, but the loss curve for
FedSam in figure 2 highlights its strong ability to handle clients
with different dataset sizes and distributions. FedSam is able to
negate the push/pull effect from clients with different amounts
of data and aggregate the model weights in a more effective
manner than a basic FedAvg algorithm and even FedMMB.
Model 1 was trained using FedMMB and model 2 trained using
FedSam

Both models were trained using the following clients
1. Client 1 trained using CIC-IDS2018 data
2. Client 2 trained using CIC-IDS2017 data
3. Client 3 trained using NCC-DC data

Model Data Pre-
cision Recall F1

Score

Confusion
Matrix

1 Benign 0.97 0.95 0.96 [22727,1273]

Attack 0.95 0.97 0.96 [716,23284]

2 Benign 0.98 0.97 0.97 [23183,817]

Attack 0.97 0.98 0.97 [458,23542]

TABLE X
FedMMB FL MODEL COMPARED TO FedSam FL MODEL

Fig. 2. FedMMB vs FedSam Test Data Loss for 2000 Rounds Rounded

D. Unknown Data

The experiment in this section tested our 3-client FL model
with an unknown data set. The results from this experiment
highlight our FL model’s strong ability to take in unknown
data and classify it correctly.

The FL models in this experiment were trained for 5,000
rounds using our novel MinMax Scalar and FedSam algorithm.
The three clients were trained with either the CIC-IDS2017,
CIC-IDS2018, NCC-DC, or the MAWI-Lab datasets and tested
with dataset not used in the training. Below are the test datasets
used for each model. See table XII for the results.

1. Model 1 tested with MAWI-Lab data
2. Model 2 tested with CIC-IDS2018 data
3. Model 3 tested with CIC-IDS2017 data
3. Model 4 tests with NCC-DC data

VIII. DISCUSSION

The research conducted demonstrates that FedSam, our
novel min-max algorithm, and classifier technique are valu-
able strategies that can help companies with different data
distributions use FL to expand the scope of their IDS while
keeping their data private. By implementing our novel min-
max algorithm and FedSam, we were able to scale each client
equally and prevent one client from having too much influence



Model Data Pre-
cision Recall F1

Score

Confusion
Matrix

1 Benign 1.0 0.89 0.94 [1333523,166477]

Attack – – – [0,0]

2 Benign 1.0 0.96 0.98 [2134210,84352]

Attacks 0.95 1.0 0.97 [2365,1621125]

3 Benign 0.99 0.93 0.96 [1033264,71900]

Attack 0.88 0.99 0.93 [6340,519863]

4 Benign 0.71 1.0 0.83 [23183,817]

Attack 1.0 0.93 0.97 [28786,403084]

TABLE XI
FedSam ON DIFFERENT UNSEEN DATASETS

in the global model. These techniques helped our anomaly
detector via FL preform just as well as a central model trained
with all of the data sets. Additionally, the individual central
models have relatively low accuracies of 69.76%, 62.68%,
and 41.24% when tested on a combination of CIC-IDS2018,
CIC-IDS2017, and NCC-DC data. If we imagine each of
these models as separate companies, their IDS would perform
poorly. However, when the three companies participate in the
federated model, they each have access to the global IDS that
classifies benign and malicious network activity correctly in
98% of scenarios.

Another benefit of FL is data privacy and protection. Be-
cause our novel min-max algorithm is randomly initialized
before being sent to a client, the data used to create the global
min-max scaler can never be tracked back to a specific client.
This keeps the small amount of data used to create the global
min-max scaler anonymous.

For these reasons, our approach to anomaly detection via
FL with our novel techniques provide a way for companies
of different sizes to share their insights with each other in
a secure manner and improve the scope and effectiveness of
their IDS.

IX. CONCLUSION

In this paper, we presented a novel min-max scalar for FL,
a sampling technique called FedSam which helps ensure each
client in the federation has an equal influence on the model,
and an autoencoder with classifier model trained using FL
to detect benign and malicious network activity. Our results
showed that our novel FL techniques have the ability to
perform very well in the field of anomaly detection, and it
can become a valuable asset to a company’s IDS.

A. Future Work

There are a variety of topics to continue our research in FL.
One topic is to explore ways to detect when a client, either
intentionally or unintentionally, starts using attack data to
train the autoencoder. This scenario would cause the anomaly
detector to miss attacks and leave the clients in the federa-
tion vulnerable. Along with detecting data poisoning, future

research could explore ways to detect model poisoning. It is
important to ensure the reliability of the global FL model so
there needs to be a way to detect when a client has tampered
with the model parameters to disrupt the learning.
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