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ABSTRACT

Rolling bearing fault diagnosis has garnered increased atten-
tion in recent years owing to its presence in rotating ma-
chinery across various industries, and an ever increasing de-
mand for efficient operations. Prompt detection and accurate
prediction of bearing failures can help reduce the likelihood
of unexpected machine downtime and enhance maintenance
schedules, averting lost productivity. Recent technological
advances have enabled monitoring the health of these assets
at scale using a variety of sensors, and predicting the failures
using modern Machine Learning (ML) approaches including
deep learning architectures. Vibration data has been collected
using accelerated run-to-failure of overloaded bearings, or by
introducing known failure in bearings, under a variety of op-
erating conditions such as rotating speed, load on the bearing,
type of bearing fault, and data acquisition frequency. How-
ever, in the development of bearing failure classification mod-
els using vibration data there is a lack of consensus in the
metrics used to evaluate the models, data partitions used to
evaluate models, and methods used to generate failure labels
in run-to-failure experiments. An understanding of the impact
of these choices is important to reliably develop models, and
deploy them in practical settings. In this work, we demon-
strate the significance of these choices on the performance
of the models using publicly-available vibration datasets, and
suggest model development considerations for real world sce-
narios. Our experimental findings demonstrate that assign-
ing vibration data from a given bearing across training and
evaluation splits leads to over-optimistic performance esti-
mates, PCA-based approach is able to robustly generate la-
bels for failure classification in run-to-failure experiments,

and F scores are more insightful to evaluate the models with
unbalanced real-world failure data.

1. INTRODUCTION

Bearings are a crucial component of machines used across
various industries, and their reliable operation is critical for an
organization to robustly maintain its supply chain. Unplanned
downtime of machines leads to revenue loss, lowered produc-
tivity, and missed production targets which in turn adversely
affects an organization’s ability to meet its obligations leading
to a reputation and other risks. However, bearings are prone
to failure for a variety of reasons, including material defects,
corrosion, wear, and poor installation (Howard, 1994). Pre-
dicting bearing failures in advance, and replacing the bearing
to avoid inflicting significant damage to the machine will help
lower both maintenance and capital costs. Vibration signals
obtained using a variety of accelerometers are widely used to
monitor and assess the health of rotatory systems (Murphy,
2020). The scale at which machines are deployed across var-
ious industries requires automated ways to monitor failures
arising in these machines and alert maintenance personnel
(Fausing Olesen & Shaker, 2020).

Automated detection of bearing failures (Howard, 1994)
and the estimation of a component’s remaining usable life
(Schwendemann et al., 2021) have been active research top-
ics for many years, however the technologies to monitor and
detect failures at scale has become possible by advances in in-
ternet of things (IoT) and artificial intelligence (AI) (Z. Zhao
et al., 2020). Monitoring the health of thousands of machines
has become possible, with a wide variety of vibration sensors
(both piezoelectric and Micro Electro Mechanical Systems
(MEMS) accelerometers) using a variety of signal acquisition
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characteristics, battery life, and data communication capabil-
ities to on-premise or cloud servers. Automated detection
approaches have evolved from basic statistical approaches to
more modern learning based approaches. Statistical meth-
ods in the time domain use energy level (root mean square
value, crest factor), kurtosis, peak, and shape of the ampli-
tude probability distribution, to detect failures (Yazdi et al.,
2019). Spectral features provide a complementary view of the
vibration waveform that readily shows differences between
various bearing failures (Xu, Lu, Jia, & Jiang, 2020). Time-
frequency approaches that are effective in non-stationary sig-
nals,such as the short-time Fourier transform (STFT) and
Wavelet Transform (WT) have also been used to analyze vi-
bration signals (P. Wang et al., 2017). In addition, other or-
thogonal transforms such as Continuous Wavelet Transform
(CWT), Discrete Wavelet Transform (DWT), and Empirical
Mode Decomposition (EMD) (Buchaiah & Shakya, 2022)
have been explored. Condition monitoring approaches used
heuristics/thresholds (e.g. ISO 20816) on these features to
detect and classify failure, however the performance of these
approaches is limited as these thresholds don’t necessarily
generalize to different operating settings. Machine learning
(ML) approaches have helped overcome these limitations by
learning to discriminate the failures automatically from data.

ML approaches have used features extracted from vibration
signals along with support vector machine (SVM, Random
Forest (RF), XGBoost, and various other classifiers (Tyagi,
2008), and demonstrated improved performance in detecting
various faults. Recently, Deep Learning (DL) approaches,
which have demonstrated superior performance across sev-
eral large-scale benchmarks in computer vision and natural
language processing (LeCun et al., 2015), have garnered in-
creased attention in the Prognostics and Health Monitoring
(PHM) community for detecting failures of rotating machin-
ery. A variety of DL architectures including Convolutional
Neural Networks (CNN) and its variants, Recurrent Neural
Networks (RNN), Auto Encoder (AE), Generative Adversar-
ial Networks (GANs) have been used for detecting failures.
However there is a lack of consensus on choice of how the
machine learning problem is formulated, model is trained, or
evaluated across these studies.

Bearing fault classification problems are formulated as binary
or multi-class classification problems with outputs as bearing
labels (Z. Zhao et al., 2020), failure/no-failures (Cui et al.,
2022), or different failure classes (B. Zhao & Yuan, 2021).
Several studies that were developed to detect failures have
leveraged popular open source datasets (B. Wang et al., 2018;
Berghout et al., 2021; Hendriks et al., 2022). Vibration data
available in these datasets have been gathered with experi-
mental setups, using accelerated run-to-failure of overloaded
bearings or manually damaged bearings, under a variety of
operating conditions. In order to accurately assess perfor-
mance of these bearing classification models, input data has

to be split into training, validation and test partitions with-
out any information leakage between the splits (Abu-Mostafa
et al., 2012). Information leakage leads to over-optimistic
performance estimates of models whose performance fails to
hold in real-world scenarios (Abu-Mostafa et al., 2012; Ri-
ley, 2019). Several fault classification studies (Y. Zhao et al.,
2020; Ruan et al., 2023) that have reported high performance
however assign waveform recordings from the same bearing
to both training and test partitions. We demonstrate such
assignment of a bearing data across partitions leads to high
performance estimates. In the run-to-failure experiments, the
rate of degradation of the bearings is variable. Lesser number
of data samples are collected from bearings that fail faster (as-
suming a fixed vibration data acquisition rate) which in turn
results in lesser amount of data available to train the failure
detection models. Further the criteria used by various studies
to segment the run-to-failure data into failure and normal op-
erating region, such as considering only last few samples in
the wave file (Z. Zhao et al., 2020), or using a Principal Com-
ponent Analysis (PCA) approach (Juodelyte et al., 2022) adds
to the variation and imbalance in the data available across
classes. The number of bearings with particular injected fail-
ures further influences the amount of data available to train
fine grained failure detection models. In spite of these differ-
ences in the number of bearings associated with a failure, and
the amount of data available in the failure region of a bear-
ing, accuracy has been widely used as performance metric by
theses studies (Schwendemann et al., 2021; Neupane & Seok,
2020), a choice not ideal in evaluating classifiers with unbal-
anced datasets and multi-class classifiers (Davis & Goadrich,
2006). Our work considers the effect of these choices on the
failure prediction models.

In this work, we take a closer look at the formulation of the
ML problem, the dataset apportioning choice for model de-
velopment, and the metrics to evaluate failure classification
models. We formulate the failure classification problem as a
coarse failure/no-failure binary classification, or as more fine
grained failures/no-failure multi-class classification to study
their efficacy on different datasets. We investigate this using
three bearing failure datasets (both run-to-failure and injected
failures). We also demonstrate how the choice of segmenting
the run-to-failure datasets using a threshold or an unsuper-
vised PCA followed by a k-means clustering method influ-
ences the amount of data available for training the model. We
further investigate the influence of training, validation, and
test dataset splits that considers the bearing information, and
importance of using metrics (precision, recall, F-score, and
Fmac) in addition to accuracy. This work helps underscore
the importance of several key choices in reliably developing
models, and deploying them in practical settings for PHM.

The rest of this paper is organized as follows. In Section 2
we briefly describe the datasets that are explored in this study
followed by the proposed approach in Section 3. In Section 4,
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we demonstrate through experiments the influence of various
choices, and finally summarize the effect of these choices in
Section 5.

2. DATASET

This section describes three publicly-available bearing fault
vibration datasets that we use in our study.

2.1. FEMTO

The FEMTO dataset (Berghout et al., 2021) contains vibra-
tion data recorded during accelerated bearing failures using
the PRONOSTIA experimental platform. Vibration data was
collected in horizontal and vertical directions using 17 bear-
ings under three distinct operating conditions. In our study,
we only consider horizontal vibration data where changes re-
lated to failures were observed. The vibration signal was
recorded every ten seconds at a sampling rate of 25.6 kHz
for 0.1 seconds resulting in 2560 data points per waveform.

2.2. XJTU

Xi’an Jiaotong University dataset (XJTU) (B. Wang et al.,
2018) is a more recent vibration dataset collected during ac-
celerated bearing failures. This dataset consists of data ob-
tained from 15 run-to-failure bearings under three distinct op-
erating conditions, where different bearing failure types have
been identified. We use the failure types Inner race (IR), outer
race (OR), Inner race-outer race (IR and OR), cage, Inner
race-ball-cage-outer race (COBI) failures along with normal
data for our multi-class classification formulation. The vibra-
tion signal was recorded every minute at a sampling rate of
25.6 kHz for 1.28 seconds resulting in 32768 data points per
waveform.

2.3. CWRU

Case Western Reserve University (CWRU) dataset (Hendriks
et al., 2022) contains vibration data collected from bearings
with induced faults from the fan-end or the drive end bearings
at different operating conditions. Single-point faults were
introduced with fault diameters of 0.007, 0.014, and 0.021
inches on the rolling element (BALL), IR, and OR, respec-
tively. We use these failure categories along with normal op-
eration as labels for the multi-class classification formulation.
In this study a single waveform was recorded at either 12KHz
or 48 KHz continuously for roughly 5-10 seconds. We down-
sampled the 48KHz waveforms to 12 KHz in order to analyze
data consistently regardless of the sampling frequency used in
the recording.

3. APPROACH

Classification techniques were used to determine if an oper-
ation is normal or faulty with datasets obtained from accel-

erated run-to-failure experiments, and induced failures. We
consider a binary classification approach to separate faults
and normal operation. In datasets where the types of fail-
ures are identified (XJTU and CWRU), we use a multi-class
classification approach where each fault is considered as a
class along with normal operation. The multi-class labels of
these two dataset are however different as described in Sec-
tion 2, and the total number of samples in each fault category
after windowing is shown in Table 3. Our approach for ob-
taining the labels, splitting the dataset, pre-processing, model
development, and performance evaluation is illustrated with
a schematic in Figure 1.

Figure 1. Workflow of approach. Our model development
follows a three step process denoted by boxes A, B, and C.
The first step, box A starts with creating data partitions for
training, validation and testing, however run-to-failure exper-
iments requires an additional label generation process pre-
ceding this step as shown in box A’. The second step, box B,
represents data pre-processing and preparation. In this step
after windowing the data appropriately, several features are
extracted. The final step, box C represents model fitting, and
performance assessment.

3.1. Dataset splits

We split the data collected from each bearing into train
(Train), validation (Val) or test (Test) splits as shown in Fig-
ure 1 (Block A). We use this split strategy of assigning data
from each bearing only to a single partition as it would help
us understand the ability of models to generalize to new bear-
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Table 1. Assignment of bearings to Train, Val or Test splits
(bearing ID as represented in the original study)

Dataset Train Bear-
ing IDs

Val Bearing
IDs

Test Bearing
IDs

FEMTO 1 1, 1 2, 2 1,
2 2, 3 1, 3 2,
1 3, 2 3

1 4, 1 5, 2 4,
2 5

1 6, 1 7, 3 3,
2 6, 2 7

XJTU 1 1, 1 4, 1 5,
2 1, 2 2, 2 4,
3 1, 3 2, 3 5

1 3, 2 5, 3 3 1 2, 3 4, 2 3

CWRU 12k Drive/B,
12k Drive/IR,
12k Drive/OR,
48k Drive/B,
48k Drive/IR,
48k Drive/OR,
Normal

12k Fan/B/-
(007,014),
12k Fan/IR/-
(007,014),
12k Fan/OR/-
(007,014),
Normal

12k Fan/OR/-
(021),
12k Fan/B/-
(021),
12k Fan/IR/-
(021), Normal

ings, a condition necessary for it to be useful in the real world.
We also experiment with a random split approach to under-
stand the impact of splits on performance. Table 1 shows the
IDs of the bearing (as represented in the original study) and
how they are assigned to training, validation or test splits for
the FEMTO, XJTU, and CWRU datasets.

3.2. Generating labels for run-to-failure experiments

We consider two approaches to partition the datasets ob-
tained from run-to-failure experiments into failure(s) and
non-failure classes. We consider an approach where the time
points after the first instant the accelerometer reading exceeds
either 5g or 10g as failure. This naive threshold approach is
motivated by how accelerated run-to-failure experiments are
terminated at a certain point in time when vibration exceeds
a certain level. We also consider another approach used as
a baseline in (Juodelyte et al., 2022) that uses PCA of the
spectral data and k-means to generate bearing failure classes
as shown in Figure 1 (Block A‘). This approach projects the
features of the signal into a lower dimensional space using
PCA, followed by clustering that data using a k-means algo-
rithm (Juodelyte et al., 2022). We use this approach with 4
classes for k-means, and the classes enriched for data points
that occur later in time (when the experiments are terminated
with a failed bearing) are termed as failure class(es). The rest
of the points are considered normal (non-failure).

3.3. Windowing and feature extraction

The duration and the number of the vibration waveforms
recorded across datasets are different (0.1 secs in FEMTO
to upto 10 secs in CWRU for a single waveform). We seg-
ment a single waveform into windows of 1024 or 2048 points
in length as used by (Peng et al., 2021), and with a 25%
overlap between segments as shown in Figure 1 (Block B).
Our experimental results however were not sensitive to this

Table 2. Number of data samples in Train, Val and Test sets

Splits FEMTO CWRU XJTU
Train 102212 3660 98224
Val 13010 555 13888
Test 14748 210 35344

choice of window length, and we report performance of clas-
sifiers with 2048 points. After splitting the signals into equal
segments, different time domain features (TIME): mean, ab-
solute median, standard deviation, skewness, kurtosis, crest
factor, energy, RMS, number of peaks, number of zero cross-
ings, Shapiro test, KL divergence (Juodelyte et al., 2022); fre-
quency domain frequencies: Real-Valued Fast Fourier Trans-
form (RFFT) (Juodelyte et al., 2022), and time-frequency:
Short Time Fourier Transform (STFT) (P. Wang et al., 2017)
features are extracted. We show the total number of feature
records/samples available for each split in Table 2. The pro-
portion of samples available for each split is not consistent
across datasets as our splits are based on the bearings, and
the number of observations available for each bearing may
vary due to differences in either time to failure or duration of
the recording.

3.4. Modeling and evaluation

We train SVM, RF, Logistic Regression (LR), Naive Bayes
(NB), and Multi-Layer Perceptron (MLP) models with RFFT,
TIME and STFT features. We attempted hyper-parameter
tuning of SVM, LR, NB, and MLP, however after our ex-
periments, we noticed the default parameter settings of SVM
(C=1.0, kernel=’rbf’, class weight=’balanced’), LR (C=1.0,
class weight=’balanced’), NB (priors=None) in sklearn1

provided the best performance. We train the MLP model with
a three fully connected and batch normalization layers along
with ReLU activation and softmax cross-entropy loss using
PyTorch2. We also use a baseline dummy classifier from
sklearn (denoted DUMMY) with a ’stratified’ parameter that
only considers the class probability distribution without any
dependence on the input features.

We finally evaluate the fault classification models using the
well established metrics in ML literature (Accuracy (Acc),
Precision (Prec), Recall (Rec), F-score (F ), and F1 macro
(Fmac)) for binary and multi-class classification (Grandini et
al., 2020) as shown in Figure 1 (Block C).

4. RESULTS

In this section we investigate the approaches to identify fail-
ures in run-to-failure experiments, performance of binary and
multi-class fault classifiers, and the influence of the splits,

1https://scikit-learn.org/stable/
2https://pytorch.org/
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Table 3. Data samples distribution across different classes in different datasets

Class Binary Multiclass
FEMTO XJTU CWRU XJTU CWRU

OR 4928 OR 2148
IR 1152 IR 1016

Failure 18972 12032 4215 CAGE 3136 BALL 1051
IR and OR 32

COBI 2832
Normal 110998 135424 210 Normal 135376 Normal 210

Figure 2. Label generation using the threshold and PCA ap-
proaches in the run-to-failure datasets (a) XJTU (b) FEMTO.

choices that affect the development of fault classification
models.

4.1. Choice of identifying the failure and non-failure in
run-to-failure experiments

We generated the labels for run-to-failure data using a naive
threshold and PCA approaches in Figure 2. This figure shows
the vibration signal amplitude over time for the XJTU and
FEMTO run-to-failure datasets. One can observe this thresh-
old of first occurrence of either 5g (black line) or 10g (green
line) seems to work reasonably in XJTU dataset (see Fig 2a),
separating the regions where the amplitude ranges are ris-
ing, from the one where it is roughly constant. In fact, it
works well across most bearings in this dataset (results not
shown). However this naive approach doesn’t work well on
FEMTO dataset where 5g seems better than 10g on separat-
ing the signal where vibration amplitudes starts to increase
(see Fig 2b), and doesn’t remain consistent across other bear-
ings. The amplitude ranges of the vibration across datasets
also changes (upto 40 g in FEMTO versus 30 g in XJTU),
which also depends on the load and other operating condi-
tions making a threshold based approach not consistent. The
approach of using PCA followed by k-means clustering (red
line) seems to separate the two regions of low amplitude and
high amplitude signals better. The results of training various
multi-class classification models on the data partitioned using
the 10g threshold, and the PCA approach in XJTU dataset is
shown in Tables 4 and 6 respectively. These results though
not comparable, as the test sets are different, show similar
performance. We use the PCA approach that is generalizable

across datasets, and illustrate the results in the remaining sec-
tions of the paper.

Table 4. Multiclass classification results on XJTU dataset us-
ing 10g threshold

Models Features Multiclass
Acc Fmac Prec Rec

SVM
RFFT 0.757 0.272 0.257 0.362
TIME 0.869 0.250 0.385 0.326
STFT 0.336 0.191 0.255 0.258

NB
RFFT 0.849 0.273 0.249 0.326
TIME 0.869 0.295 0.265 0.354
STFT 0.852 0.276 0.252 0.327

RF
RFFT 0.874 0.286 0.257 0.387
TIME 0.841 0.282 0.257 0.383
STFT 0.837 0.282 0.257 0.379

MLP
RFFT 0.869 0.245 0.221 0.293
TIME 0.839 0.235 0.220 0.257
STFT 0.856 0.239 0.216 0.242

Table 5. Binary classification results on FEMTO dataset

Models Features Binary
Acc F Prec Rec

DUMMY
RFFT 0.878 0.492 0.499 0.498
TIME 0.873 0.491 0.499 0.497
STFT 0.879 0.496 0.502 0.505

SVM
RFFT 0.950 0.732 0.931 0.666
TIME 0.946 0.684 0.969 0.624
STFT 0.949 0.712 0.969 0.646

NB
RFFT 0.987 0.954 0.933 0.977
TIME 0.938 0.641 0.860 0.596
STFT 0.991 0.966 0.956 0.977

RF
RFFT 0.936 0.585 0.960 0.557
TIME 0.941 0.643 0.965 0.594
STFT 0.938 0.605 0.962 0.569

MLP
RFFT 0.938 0.618 0.894 0.579
TIME 0.944 0.664 0.967 0.609
STFT 0.946 0.683 0.968 0.623

4.2. Binary and multi-class fault classifiers

We show the results of binary and multi-class setups on
FEMTO, XJTU, and CWRU datasets in Tables 5, 6, and 7 re-
spectively. We observe the performance of the binary classifi-
cation is in general better across the methods than that of the
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Table 6. Binary and multiclass classification results on XJTU dataset

Models Features Binary Multiclass
Acc F Prec Rec Acc Fmac Prec Rec

DUMMY
RFFT 0.832 0.495 0.499 0.499 0.823 0.158 0.162 0.160
TIME 0.833 0.496 0.500 0.500 0.827 0.162 0.170 0.164
STFT 0.831 0.492 0.495 0.497 0.827 0.162 0.169 0.163

SVM
RFFT 0.968 0.930 0.893 0.979 0.892 0.266 0.242 0.351
TIME 0.944 0.846 0.897 0.810 0.885 0.234 0.220 0.254
STFT 0.969 0.925 0.924 0.926 0.889 0.308 0.286 0.353

NB
RFFT 0.950 0.896 0.848 0.971 0.728 0.251 0.243 0.297
TIME 0.954 0.903 0.857 0.973 0.823 0.195 0.192 0.222
STFT 0.952 0.900 0.854 0.973 0.740 0.258 0.249 0.299

RF
RFFT 0.912 0.674 0.931 0.624 0.884 0.235 0.471 0.250
TIME 0.963 0.921 0.880 0.979 0.882 0.196 0.193 0.205
STFT 0.907 0.644 0.935 0.602 0.888 0.293 0.468 0.283

MLP
RFFT 0.943 0.866 0.853 0.880 0.902 0.311 0.294 0.332
TIME 0.915 0.701 0.915 0.656 0.883 0.253 0.245 0.263
STFT 0.947 0.880 0.856 0.910 0.884 0.264 0.258 0.269

Table 7. Binary and multiclass classification results on CWRU dataset

Models Features Binary Multiclass
Acc F Prec Rec Acc Fmac Prec Rec

DUMMY
RFFT 0.843 0.486 0.529 0.506 0.252 0.208 0.437 0.225
TIME 0.843 0.486 0.529 0.506 0.262 0.223 0.232 0.237
STFT 0.838 0.508 0.556 0.517 0.262 0.207 0.240 0.233

SVM
RFFT 0.976 0.954 0.929 0.986 0.657 0.628 0.614 0.700
TIME 0.857 0.462 0.429 0.500 0.495 0.315 0.251 0.433
STFT 0.981 0.963 0.941 0.989 0.700 0.658 0.622 0.738

NB
RFFT 1.000 1.000 1.000 1.000 0.695 0.693 0.808 0.733
TIME 0.295 0.233 0.343 0.186 0.067 0.043 0.034 0.058
STFT 1.000 1.000 1.000 1.000 0.467 0.518 0.521 0.533

RF
RFFT 0.857 0.462 0.429 0.500 0.457 0.296 0.236 0.400
TIME 0.857 0.462 0.429 0.500 0.267 0.177 0.142 0.233
STFT 0.976 0.948 0.986 0.917 0.338 0.190 0.231 0.296

MLP
RFFT 0.924 0.871 0.826 0.956 0.471 0.441 0.416 0.537
TIME 0.857 0.462 0.429 0.500 0.362 0.229 0.186 0.317
STFT 0.857 0.462 0.429 0.500 0.624 0.575 0.510 0.671

multi-class classifier. This likely arises due to the vibration
signatures of non-failure classes being distinct from failures,
but differences in signatures between failure classes might be
more subtle. In the binary setup, we observe from Tables
5, 6, 7, that NB with STFT/RFFT features performs best on
FEMTO and CWRU datasets, and SVM with STFT/RFFT
features performs best on XJTU with an F score roughly 43%
greater than the dummy classifier.

The number of samples available for both the binary and
multi-class classification is highly imbalanced as shown Table
3, however the metric used to assess models widely in the lit-
erature is just accuracy (Z. Zhao et al., 2020; B. Zhao & Yuan,
2021; Schwendemann et al., 2021; Y. Zhao et al., 2020; Ne-
upane & Seok, 2020). Clearly our results both in the binary
and multi-class formulations show even though the accuracy
metrics are high, other metrics are relatively lower. Precision
and recall metrics are useful in imbalanced binary problems,

however the average of this still might not be enough with
imbalanced multi-class problems, and we use Fmac score for
interpreting these problems. Further to understand where we
stand with respect to the performance of a given classifier we
compare it to the results of the dummy classifier that classi-
fies a sample randomly to a category with a probability pro-
portional to the number of samples in that category.

In the multi-class classification setup, we observe from Table
6, MLP model with RFFT features performs well on XJTU
with roughly 15% Fmac more than the dummy classifier. We
also observe SVM and RF with STFT trails the best method
by just 0.3% and 1.8% respectively. On CWRU dataset, NB
with RFFT performed well as shown in the Table 7 which is
48% more than the dummy classifier. This improvement over
the baseline could possibly be due to the stark differences in
vibration data observed due to the injection of faults in novel
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Table 8. Multiclass classification results on XJTU dataset with bearing split and random split

Model Feature Bearing split Random split
Acc Fmac Prec Rec Acc Fmac Prec Rec

SVM STFT 0.890 0.309 0.286 0.355 0.988 0.779 0.787 0.774
NB RFFT 0.728 0.251 0.243 0.297 0.910 0.616 0.515 0.899

Table 9. Multiclass classification results on CWRU dataset with bearing split and random split

Model Feature Bearing split Random split
Acc Fmac Prec Rec Acc Fmac Prec Rec

SVM STFT 0.700 0.658 0.622 0.738 0.851 0.865 0.925 0.834
NB RFFT 0.695 0.693 0.808 0.733 0.858 0.833 0.902 0.792

bearings as opposed to the continuous progression towards
failure in run-to-failure experiment like XJTU.

4.3. Importance of bearing information while doing splits

We observe our performances are conservative as compared
to various studies that reported multi-class classification per-
formance on these datasets (Z. Zhao et al., 2020; B. Zhao &
Yuan, 2021; Schwendemann et al., 2021) which used a ran-
dom split strategy of assigning feature records from the same
bearing to more than one of Train, Val and Test splits, (e.g.
features from bearing 2 1 in XJTU could be part of Train, Val
and Test splits). In order to understand how well the model
trained on data from a few given bearings will perform in the
‘field‘ (i.e how well will the model perform on vibration data
from a new bearing under similar but not identical settings),
we will have to tailor our model assessment strategy to reflect
this setting. Our split strategy of assigning the bearings to
just one split more closely resembles this scenario of assess-
ing the classifier performance in the real world. We however
generated results on the random split to show we are able to
generate performance similar to what has been reported in the
literature. Although the test datasets with the bearing split and
random split are not comparable as the test partitions are dif-
ferent. We observe the performances of SVM with STFT and
NB with RFFT on the bearing split are conservative by 47.0%
and 36.5% Fmac on XJTU datasets (Table 8). We observe a
similar trend on the CWRU where SVM with STFT and NB
with RFFT on the bearing split are conservative by 20.7% and
14.0% Fmac (Table 9). We have also looked at class confu-
sion matrices to understand which classes perform better, and
observed that normal category does better than other specific
faults. We hypothesize it is likely due to the number of sam-
ples available in each category to train the model with respect
to the variability within a given class.

5. CONCLUSION

In our work we investigated the impact of various choices that
are important to reliably develop models, and deploy them in

practical settings using publicly-available vibration datasets.
Our problem formulation of fault classification into binary or
multi-class demonstrates that performances are higher in the
binary setting as compared to the multi-class setting. We also
observe injected failures are easy to separate over segmented
run-to-failure datasets. We also show vibration datasets are
heterogenous in the amount of data available for different
failures, and its important to look at metrics that handles the
multi-class scenario and imbalance in the dataset. Our in-
vestigation also showed the robustness of the PCA based ap-
proach as compared to simple threshold in handling multi-
ple datasets. We also demonstrate the importance of splitting
by bearing as opposed to reporting it on random splits. We
also show the usefulness of baseline dummy classifiers that
uses class statistics, well known strategy used in practical
ML settings, for developing bearing fault classification ap-
proaches, and recommend other research studies report their
performance on this baseline along with other baselines.

This work helped underscore the importance of several key
choices to reliably develop models, and deploy them in prac-
tical settings for PHM using the acceleration data. It is im-
portant for future studies to investigate other choices not con-
sidered in this study such as different features obtained us-
ing other transformations, and signal representations learned
from data using more advanced embedding approaches. Our
study considered only a baseline MLP classifier, and we
leave other modern neural architectures like convolutional,
recurrent networks with various learning paradigms for future
work.
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