
Cross-temporal Detection of Novel Ransomware
Campaigns: A Multi-Modal Alert Approach

Sathvik Murli, Dhruv Nandakumar, Prabhat Kumar Kushwaha, Cheng Wang,
Christopher Redino*, Abdul Rahman, Shalini Israni, Tarun Singh, Edward Bowen

Deloitte & Touche LLP
* Corresponding Author: credino@deloitte.com

Abstract—We present a novel approach to identify ransomware
campaigns derived from attack timelines representations within
victim networks. Malicious activity profiles developed from mul-
tiple alert sources support the construction of alert graphs. This
approach enables an effective and scalable representation of
the attack timelines where individual nodes represent malicious
activity detections with connections describing the potential
attack paths. This work demonstrates adaptability to different
attack patterns through implementing a novel method for parsing
and classifying alert graphs while maintaining efficacy despite
potentially low-dimension node features.

Index Terms—Ransomware, Multi-modal Artificial Intelli-
gence, Alert Graph

I. INTRODUCTION

Ransomware is a form of attack in which an individual or
group of attackers gain access to a network or devices with
sensitive data on it. They then steal this data and encrypt it,
demanding a ransom for its safe return. Ransomware attacks
have also evolved over time, moving from just encrypting data
to extorting victims by also exfiltrating data. As explored in
[1], [2], ransomware attacks commonly occur in several stages.
These stages generally involve the initial disbursement of
malware, infection of a target network, staging of ransomware,
and finally encryption of sensitive data. Encryption of sensitive
data can take many forms. For example, in a Doxware attack
[1], hackers may threaten to make user’s private data public.
This causes irreversible damage as this data can never be made
private again. Or in a traditional crypto-ransomware attack,
data will be encrypted without necessarily affecting user’s
systems.

This general structure can still allow for different types of
attacks and intrusions to occur during a ransomware campaign.
Ransomware taxonomies often show multiple attack types
within the infection stage for example, and the same can be
said of command and control (C&C) communication [1], [3].
This applies to all stages of ransomware attacks, with cases
being observed where Distributed Denial of Service (DDoS)
attacks are used to disguise data exfiltration, or banking trojans
become precursors to malware payloads. Given these different
attack patterns, ransomware attacks become more difficult to
detect ahead of the final encryption phase with piecemeal
detections of different attacks. In this work, we hypothesize
that a modelling approach that considers disparate alerts over
a large time frame as part of a larger campaign would be able

to effectively detect ransomware attack at various stages of the
campaign.

In this paper we present a novel approach to identify
ransomware campaigns based off representations of attack
timelines as they occur on victim networks. The key contri-
butions of this paper are two-fold:

• An effective and scalable representation of the attack
timelines, formed by combining malicious activity de-
tections coming from multiple alert sources into alert
graphs. Within these graphs, individual nodes represent
malicious activity detections and the connections describe
the potential attack paths

• A method for parsing and classifying alert graphs,
that maintains efficacy despite potentially low-dimension
node features

Our approach will allow us to detect ransomware attacks
throughout their campaigns, and adapt to different potential
attack paths and patterns.

II. REVIEW OF THE LITERATURE

Given the ubiquity of these attacks and the speed at which
they occur, a wide range of solutions have been developed.
As discussed in [1], these solutions vary based on the data
they are analyzing and the analysis or detection method.
Several research methods have been proposed using static and
dynamic analysis, both of which involve analyzing features
like opcodes, hashes, and byte sequences of ransomware files.
Static analysis inspects a suspicious binary without executing
it, while dynamic analysis involves investigation of a binary
as it is executing in a “sandbox” environment [1].

Many rule-based approaches to ransomware detection have
been proposed. Most of these methods use a variety of input
features to detect ransomware file execution.

Scaife et al. [4] and Naik et al. [5] both developed rulesets
by operating on indicators based on files and filesystem be-
haviors. Morato et al. [6] presented an algorithm, Ransomware
Early Detection from File SHaring Traffic (REDFISH), based
on analysis of network traffic to develop rules that would indi-
cate potential encryption of files in shared network volumes.
Others have focused more on decoy-based systems such as
honeypots, like Moore [7] and Gómez-Hernández el al. [8].

Multiple machine learning or deep learning based methods
have been proposed to combat ransomware attacks as well,
largely focusing on static or dynamic analysis.

ar
X

iv
:2

30
9.

00
70

0v
1 

 [
cs

.C
R

] 
 1

 S
ep

 2
02

3



Poudyal et al. [9], Zahoora el al. [10], Sgandurra el al.
[11] all proposed methods operating on function and appli-
cation programming interface (API) calls, leveraging methods
such as N-gram generation, a deep contractive autoencoder,
and regularized logistic regression respectively. Zhang et al.
[12] developed a Self-Attention based Convolutional Neu-
ral Network to create intermediate features based off N-
gram embeddings of disassembled opcodes, which are used
to classify ransomware files. The aforementioned methods
rely on static or dynamic analysis, which can neglect other
stages in ransomware campaigns that may present attackers
with opportunities to evade detection systems that operate on
binaries.

Our proposed method for detecting ransomware campaigns
using representations of attack timelines as alert graphs allows
us to identify the goals of attackers based off the potential
attack patterns they are using. Wang et al. [13] employed
a similar method to identify the host-based threats by con-
structing provenance graphs from function calls and filesystem
operations. They then employed inductive representation learn-
ing, GraphSAGE, to classify actions as malicious or benign.
However, their methodology focused on tracing actions on
individual hosts based on function calls whereas we consider
a holistic representation of entire networks, in order to track
ransomware attacks potentially targeting and infecting multiple
hosts, across their timeline, no matter what stage they are
currently executing.

III. DATA STRUCTURING

A. Simulation

As has been identified by [1], [2], a majority of previous
research efforts have relied on datasets from the encryption
stage such as the VirusShare dataset [14] or the VirusTotal
[15] dataset. To track ransomware across its entire timeline,
the dataset we use must capture data across a ransomware
campaign. During these campaigns several malicious intrusion
methods may raise alerts in different cybersecurity tools,
and our approach correlates and combines these alerts to
form representations of attack campaigns, that we classify as
ransomware.

To create our dataset, we leverage an industry standard
attack simulation tool to simulate ransomware campaigns on
a set of hosts which have industry standard endpoint detection
and rules-based network detection sources. The hosts will also
run network flow data through a malware severity ranking
(MSR) model [16] which has been shown in prior literature to
identify anomalous network flow characteristics and malware
executions with strong performance. To form the training and
testing set, we simulate several ransomware campaigns, and a
set of other types of malware campaigns. These campaigns are
listed in Table I. During the execution of these simulations,
data is collected from the listed alert sources and combined
into a unified representation to form our input dataset. This is
fed to our algorithm for constructing a representation of attack
campaigns as alert graphs.

B. Unified Representation

In developing this methodology, we intendto remain source
and tool agnostic. In the cybersecurity industry, there are a
plethora of tools that enterprises may use to help protect
their networks, which will generate alerts and information that
the proposed approach could leverage. In order to ensure our
algorithm can support and integrate these alerts with varying
formats and characteristics, we intend to construct a unified
representation that will support different types of alerts and
detections. For each attack campaign, we observe the data
from each of the sources mentioned in the previous section
have a timestamp, risk score which quantifies the impact of a
certain event relative to the network it originates in, category
which indicates what type of malware violation it is, and a
severity score which quantifies the event’s severity across an
industry standard baseline such as the Common Vulnerability
Scoring System (CVSS). These pieces of information become
the node features that we use to represent each individual alert.
Each alert can also be described by a source host and, in some
cases, a destination host. Only if an alert involves a connection
of some kind to another host, or some form of authentication
event, then the other host becomes the destination associated
with the alert. We generate alert graphs for each individual
source host, and build connections between these alert graphs
based on the associated destination hosts. Once connections
are built between individual sources’ host graphs to form a
larger graph, this becomes the input to our model. Our ap-
proach is highly extensible as we can incorporate various alert
sources from other tools in addition to the ones used in this
study, since we are not using Internet Protocol (IP) addresses
or any features which are dependent upon a particular tool or
sensor.

C. Alert Graph Construction

Shown in Fig. 1 is our process for constructing alert graphs,
from an example table of detections. The example alerts in
the figure have already been transformed to follow our unified
representation. The timestamp, risk score, severity score, and
category will become our node features, whereas the source
host and destination host are used to determine what directed
edges are drawn. The alert sources are normalized using Min-
MaxScaling, such that each alert is normalized with respect
to the minimum and maximum values of detections observed
from each tool. Our algorithm considers alerts in batches. Each
time an alert is received we update our graph representation
of the overall campaign, and this new representation, with the
newly added alert as a node and associated edges, becomes
the input to the model. This gives us a distinct graph for each
timestep and alert we intend to analyze.

Each host receives its own alert graph, and before being
input into our model these graphs are combined based off the
connections that are part of each alert. This process is shown
by the example input set in Figure 1, where each row has an
associated update to the existing alert graphs.

As the attacks we analyze move to their next stages, more
alerts are received and are again joined to the previously



TABLE I
CAMPAIGN LIST USED TO CONSTRUCT TRAINING SET

Campaign
Name

Campaign Inspiration Category Number of
Constructed
Graphs

Campaign
Name

Campaign Inspiration Category Number of
Constructed
Graphs

Yanluowang Yanluowang ransomware
gang’s attack

Ransomware 839 APT 29 Behaviors of APT 29
threat group

Other Malware 1451

Wannacry Wannacry cryptoworm Ransomware 262 APT 39 Behaviors of APT 39
threat group

Other Malware 1451

Maze
Ransomware

Infection and propagation
of Maze

Ransomware 7759 FireEye Against FireEye assess-
ment tool

Other Malware 1133

MuddyWater Attack against Tecnion Is-
rael Institute of Technol-
ogy

Ransomware 777 AppleJeus US-CERT Alert AA21-
048A

Other Malware 1292

K12 US-CERT Alert AA20-
345A

Ransomware 1014 Badcall Campaign used to turn
machines into relay points

Other Malware 194

DeepBlueMagic IL-CERT Alert 1389 Ransomware 198 Pulse Secure US-CERT Alert AA20-
107A

Other Malware 95

Cuba Cuba ransomware Ransomware 464 Hidden Cobra US-CERT Alert AA20-
106A

Other Malware 589

Conti US-CERT Alert AA21-
265A

Ransomware 529 Cert AA22-216A US-CERT Alert AA22-
216A, multiple different
malware strains

Other Malware 1634

Clop Campaign targeting win-
dows machines

Ransomware 712 Qsnatch Qsnatch malware Other Malware 245

constructed graphs. Our alert graphs grow as the number of
alerts and detections increase, increasing the nodes and edges
drawn and the number of timesteps included. So as the graph
size increases, the detection range and timeline of the attack
also increases to its next stage. It is important to note, here,
that our approach does not require the tools from which alerts
originate to be tuned to ransomware detection specifically. In
fact, the three data sources listed above and used in this work
are not tuned to such tasks and produce general alerts for most
kinds of suspicious activity including false positive events.
However our modelling approach shows strong performance
despite these potential false positive events, which shows our
ability to assist with potential weaknesses of the underlying
tools used as inputs. It also highlights the effectiveness of our
methodology to potentially noisy data sources, allowing for
easier deployment to existing enterprise environments.

IV. METHODOLOGY

A. Pipeline

1) Initial Embedding Architecture: To create graph em-
beddings that can be used as inputs into our classifier, we
implement the architecture described in Fig 2. We leverage
graph isomorphism (GIN) layers as described in [17].

Our graph isomorphism layers use a single layer multi-layer
perceptron (MLP) to update node representations between
layers. These representations are then fed into our choice
of READOUT function, a positional encoding layer and a
transformer encoding layer as described in [18], to create a
graph-level representation. This transformer encoding layer
operates on the node representations generated for the final
120 nodes of each of our alert graphs. In the context of our
representation of attack campaigns, this means the transformer
encoding layer is operating on the most recent 120 alerts.

2) Subsequent Embedding Architecture: For the second
task that is part of our training algorithm, we include 2
sets of 2-dimensional (2D) convolutional layers and 2D max

pooling layers with our initial embedding architecture. These
convolutional layers operate on the outputs of the initial
embedding architecture. 3 versions of the previously described
GIN layers and attention-based pooling will be concatenated
to form the inputs into the convolutional layers. We use the
outputs of 3 versions of GIN layers together, treating them like
one ”image” of the graph’s properties. One set of convolutional
layers is intended as a projection head to be trained on
campaign classification, and the other acts as a projection
head to be trained on graph contrastive learning (GraphCL), as
described in [19]. These two training tasks occur in sync, with
2 cross-stitch units placed between them as described in [20].
These units share information between the projection heads,
to increase their respective performance levels by identifying
useful pieces of information from the other stacks.

3) Classifier Architecture: As the projection heads are
being trained, the value of the information computed by the
GIN layers in the initial embeddings increases. As a result,
we can utilize their outputs to perform our graph classification
task. The GIN layers are fed into a new choice of READOUT
function, a summation aggregator that adds all the node
representations to form a graph representation which becomes
the input into a set of linear layers and rectified linear unit
(ReLU) activations that output a decision on whether the
campaign being examined is a ransomware campaign.

B. Sampling Algorithm

Our campaign simulations result in a total of 20638 graphs,
as shown in I. Our graph construction algorithm creates alert
graphs each campaign. We evaluate our model architecture by
constructing our training set using two methods. We create a
training set consisting only of specific campaigns from our
overall set, and a testing set consisting of the remaining cam-
paigns. We also evaluate our model’s performance specifically
against the first 20%, 40%, and 60% of graphs included in
each campaign in the testing set, which correspond to the



Fig. 1. Algorithm used to construct input graphs. Shown here is an example set of alerts to add to existing alert graphs, and the progression of the graphs
associated with these alerts. The label on each node refers to the host and the order in which the alert arrived. For example, A0 is the first node in the graph
of host A. BX is the most recent node in the graph of host B.

first 20%, 40%, and 60% of a campaigns timeline. We found
through experimentation that we had the strongest perfor-
mance consistently on training sets that were comprised of
graphs corresponding to ransomware and malware respectively
in a 1:1 ratio, or as close as possible.

C. Training Algorithm

1) Initial Embedding Training: Our general architecture
along with which training steps apply to which layers is shown
in Figure 2. The first step in training our embedding architec-
ture is labelling each graph individually, so each graph has a
distinct identifier. Our algorithm for training the embedding
architecture involves two forward propagations through the
same network. For each of the two forward passes, noise is
added using edge perturbation to the data in the input batch.
A percentage of the edges are removed from the input graphs,
and a smaller percentage of random edges are added to the
graphs. Then the embeddings are passed into the normalized
temperature-scaled cross entropy loss (NT-Xent) [21]. The
addition of noise in the form of edge perturbation allows our
model to generalize to a wider array of input graphs, and
strengthens our performance on previously unseen campaigns.
This particular step is referred to as step 1 in Fig. 2.

2) Subsequent Embedding Training and Classification
Training: The next steps in our training process occurs si-
multaneously. First the model is trained as a Siamese neural
network, where the inputs to the models are graphs that have
been labelled by which campaign simulation they refer to.
Edge perturbations are again applied to the graphs before
they are fed into the head dedicated to that task, and the
loss of these forward passes is computed using the Sub-center
ArcFace Loss [22] for an entire epoch. Then the initial training
step is repeated but with the forward pass going through the
projection head this time. This step is referred to as step
2A in Fig. 2. While these two computations are occurring,
the cross-stitch units learn what information should be shared
between the tasks. After these metric learning tasks, an epoch

is completed for the classification task. But as described
earlier, the linear layers are trained to learn to classify the
graphs based off of the outputs of the frozen GIN layers. This
classification step is step 2B in Fig. 2.

3) HyperParameter Tuning: As part of our algorithm, there
are several hyper-parameters available to tune. In general,
for each step in our training algorithm we use the Nesterov-
accelerated Adaptive Moment Estimation (NAdam) optimiza-
tion algorithm. The first is the graph contrastive learning
optimizer used in Step 1, and re-initialized for both projec-
tion heads in Step 2A. We found the strongest, consistent
performance using a learning rate of .00085 and a weight
decay of .000085 for both of these optimizers. The Sub-
center ArcFace Loss function, also requires its own NAdam
optimizer with the same parameters. For the classification
step, Step 2B, the NAdam optimizer had varying learning
rates. In training runs where the training set was comprised of
multiple smaller campaigns, we found a smaller learning rate
and weight decay combination was most effective, .00045 and
.000025 respectively.For training sets with larger campaigns, a
combination of .0025 and .000025 for learning rate and weight
decay was used.

4) Motivation: The purpose of this multiple step training
algorithm is to create a model that can generalize well to
ransomware or malware campaigns it may have not yet seen,
while maintaining an understanding of the campaigns it has
already learned to identify as ransomware. Once our alert
graphs have been constructed, we obtain an input set com-
prised of graphs with low dimension node features, and highly
variable structures. Due to the low dimensionality of our node
features extracting valuable information in the form of node
embeddings becomes difficult. Our initial graph contrastive
learning approach, Step 1, helps increase the fidelity of our
node embeddings. However, we also need to ensure that
our graph embeddings are also extracting information that
is valuable to identifying campaign specific information, to
classify these graphs as part of ransomware campaigns or not.



Fig. 2. Model Architecture with Associated Training Steps. (Left) Shown here is our training algorithm. (Right) Shown here is our model architecture along
with the training steps that affect each layer.

This necessitates our second training step, Step 2A, where
we cross-stitch the Siamese neural network with the original
graph contrastive learning task. We train our classifier in sync
with the Siamese neural network task and contrastive learning
task, on frozen versions of our graph embeddings. Through
experimentation, we found that allowing the GIN layers to
learn from the classification task as well resulted in weaker
performance on all the tasks that are part of our training
algorithm. We also train our classifier at the same time as
the contrastive learning and Siamese neural network tasks in
step 2B because we found that this training approach prevented
severe overfitting to any one version of the graph embeddings,
which would severely limit our abilities to classify previously
unseen campaigns.

V. RESULTS

Our modelling approach has shown strong performance
on both versions of the testing sets we consider. In order
to evaluate the performance of our model, we focused on
3 key metrics: precision, recall, and area under the curve
(AUC) score. Examples of these results are shown in Table II.
From our experiments, we see that our model has an average
AUC score of .9 for experiments that consist of different
combinations of unseen ransomware and malware campaigns.
These results show the strength of our modelling approach on
identifying newer ransomware attack vectors that malicious
actors may employ because our model can perform well on
identifying unseen campaigns. For each new training set that
was used as part of our experiments, minimal tuning of the
ransomware classification learning rate was required to achieve
strong performance.

Of particular interest in our experimentation is detection
of earlier stages of ransomware campaigns. Most detection
methods are centered around detection of ransomware executa-
bles or ransomware encryption. To determine the potential of
our approach, we test our model against the first 20%, 40%,
and 60% of graphs associated with each campaign used in
our testing sets. Based on our graph construction algorithm,

these graphs would correspond to the earlier stages of ran-
somware or malware campaigns. Shown in Fig. 3 are results of
evaluating our model against the aforementioned ratios of the
testing campaigns. Our performance holds for earlier stages
of ransomware and malware campaigns, demonstrating the
efficacy of our approach in assisting with early prevention of
ransomware campaigns.

There are certain caveats when investigating our perfor-
mance. We can identify unseen campaigns when our training
set has a campaign of similar or larger size in terms of number
of alerts or stages. When we train our model on smaller
campaigns exclusively, performance falters when evaluating
against larger ransomware or malware campaigns. However,
when trained on a mix of large and small campaigns, our
model retains its strong performance.

A. Baseline Modeling

Shown in Table III and Table IV are some of the other
methods tested for the ransomware classification problem. As
shown by our results, other methods’ performance suffer in
comparison.

The first two rows of results shown in Table III denote
performance using a more standard classification approach,
with BCELoss. Our baseline approaches’ performance suf-
fered severely on testing sets built from unseen campaigns. The
first row of results in particular denotes a graph convolutional
network (GCN) where the message construction algorithm was
as described in [23]. The second row of results shows an
approach where a VGAE or variational graph autoencoder
as described in [24]. This approach was constructed using
MSELoss or Mean Squared Error Loss to compute the models
ability to reconstruct its inputs, with the hypothesis that
ransomware graphs would be constructed more effectively than
malware graphs.

The results shown in Table IV denote training runs that
followed similar metric learning approaches to our current
approach. The procedure followed was similar to the procedure
used in [19], utilizing NT-Xent Loss on the task of constructing



TABLE II
TESTING SPLITS & RESULTS

Training Campaigns Testing Campaigns Prec-

ision

Re-
call

AUC
Score

Conti, MuddyWater, Yanluowang, Clop, DeepBlueMagic,
Cuba, Apt29, Apt39, FireEye

Maze, K12,WannaCry, Badcall, PulseSecure, Cobra, Cert,
Applejeus, Qsnatch

.94 .93 0.932

Conti, MuddyWater, Yanluowang, Cuba, DeepBlueMagic,
K12, Apt29, Apt39, FireEye

Maze, Clop, WannaCry, Badcall, PulseSecure, Cobra, Cert,
Applejeus, Qsnatch

.90 .90 0.904

Clop, K12, Maze(first 12% of graphs), MuddyWater, Deep-
Blue, Cuba, PulseSecure, BadCall, Apt29, FireEye

WannaCry, Conti, Yanluowang, Apt39, Qsnatch, Applejeus,
Cert

.91 .91 .90

MuddyWater, DeepBlue, Conti, K12, Yanluowang, Cuba,
PulseSecure, Badcall, Cert, Cobra, AppleJeus, Qsnatch

Maze, WannaCry, Apt29, Apt39, FireEye .84 .94 .89

Fig. 3. Early Campaign Detection Statistics. Shown in these plots are statistics for each of our chosen testing splits for the first 20% 40% and 60% of all
the campaigns in the testing set.

TABLE III
BASE CLASSIFICATION APPROACHES & RESULTS

Approach Precision Recall AUC Score
Adjusted GCN .55 .50 .5005

VGAE .385 .50 .5
GIN .55 .50 .5005

TABLE IV
METRIC LEARNING BASED APPROACHES & RESULTS

Approach Added Noise Strongest AUC Score Embedding Task
Adjusted GCN Edge Perturbation (15% to 35%) .85 Campaign
Adjusted GCN Node Dropping (15% to 35%) .74 Campaign
Adjusted GCN Node Dropping (15% to 35%) .55 Graph
Cross-Stitched GCN’s Edge Perturbation (20% to 45%) .65 Campaign/Graph
GIN Edge Perturbation (15% to 35%) .7 Campaign
GIN with Transformer based Pooling Edge Perturbation (15% to 35%) .7 Campaign

embeddings. The models were each trained on the embedding
task specified.Then linear classifiers were trained to identify
ransomware campaigns based on the embeddings that had
been constructed. Also shown in the table are the types of
noise used. As shown by our results, while there were some
experiments that yielded strong performance, the majority
suffered when faced with campaigns that were previously
unseen by the model.

VI. CONCLUSION, LIMITATIONS, FUTURE WORK

In this work, we have introduced a multi-modal approach to
detection of ransomware campaigns. We introduced a method
of combining alerts from different detection sources into a

unified, scalable representation of attack campaigns, lowering
the effort needed to integrate different detection sources. This
approach lends itself to tool agnostic implementation, elevating
existing detection capabilities, enabling efficient triage and
incident response, and reducing operator fatigue. We also
use graph contrastive learning-based methods to classify our
alert graph representations as indicative of ransomware attacks
or not. Our modelling approach shows strong performance
on earlier stages of ransomware campaigns, where some
previously investigated detection methods have faltered. We
also have strong performance on campaigns that are previously
unseen to our model, which is crucial to an approach of this



kind. In order to remain effective against these a constantly
evolving cyber-threat landscape, a modelling approach must
be able to identify similarities between threats whether or not
it has been trained against them, and our approach has that
capability.

We also believe this work can be expanded up on in the
future. Our usage of alert graphs allows us to potentially
identify other information about attack campaigns, such as
identifying what stage of an attack is taking place. We
can use our graph representations to start predicting future
alerts that may be raised as part of attack campaigns. This
could help operators and threat hunters proactively identify
vulnerabilities. Our strong results thus far show that this
approach can be a foundation for multiple tools and models
that will assist in combatting different cyber threats in the fu-
ture.Furthermore, we believe that the model architectures and
training methodologies proposed in this work are also more
broadly applicable to graph-based problem spaces wherein the
population of graphs are hierarchically organized by classes
and sub-classes; similar to how our problem was organized
by ransomware/malware and their constituent campaigns.

REFERENCES

[1] S. Razaulla, C. Fachkha, C. Markarian, A. Gawanmeh, W. Mansoor,
B. C. Fung, and C. Assi, “The age of ransomware: A survey on the
evolution, taxonomy, and research directions,” IEEE Access, 2023.

[2] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A survey on ransomware:
Evolution, taxonomy, and defense solutions,” ACM Computing Surveys
(CSUR), vol. 54, no. 11s, pp. 1–37, 2022.

[3] R. Moussaileb, N. Cuppens, J.-L. Lanet, and H. L. Bouder, “A survey
on windows-based ransomware taxonomy and detection mechanisms,”
ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–36, 2021.

[4] N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “Cryptolock (and
drop it): stopping ransomware attacks on user data,” in 2016 IEEE 36th
international conference on distributed computing systems (ICDCS).
IEEE, 2016, pp. 303–312.

[5] N. Naik, P. Jenkins, N. Savage, L. Yang, K. Naik, J. Song, T. Boon-
goen, and N. Iam-On, “Fuzzy hashing aided enhanced yara rules for
malware triaging,” in 2020 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2020, pp. 1138–1145.

[6] D. Morato, E. Berrueta, E. Magaña, and M. Izal, “Ransomware early
detection by the analysis of file sharing traffic,” Journal of Network and
Computer Applications, vol. 124, pp. 14–32, 2018.

[7] C. Moore, “Detecting ransomware with honeypot techniques,” in 2016
Cybersecurity and Cyberforensics Conference (CCC). IEEE, 2016, pp.
77–81.

[8] J. A. Gómez-Hernández, R. Sánchez-Fernández, and P. Garcı́a-
Teodoro, “Inhibiting crypto-ransomware on windows platforms through
a honeyfile-based approach with r-locker,” IET Information Security,
vol. 16, no. 1, pp. 64–74, 2022.

[9] S. Poudyal, D. Dasgupta, Z. Akhtar, and K. Gupta, “A multi-level
ransomware detection framework using natural language processing and
machine learning,” in 14th International Conference on Malicious and
Unwanted Software” MALCON, no. October 2015, 2019.

[10] U. Zahoora, M. Rajarajan, Z. Pan, and A. Khan, “Zero-day ransomware
attack detection using deep contractive autoencoder and voting based
ensemble classifier,” Applied Intelligence, vol. 52, no. 12, pp. 13 941–
13 960, 2022.

[11] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Au-
tomated dynamic analysis of ransomware: Benefits, limitations and use
for detection,” arXiv preprint arXiv:1609.03020, 2016.

[12] B. Zhang, W. Xiao, X. Xiao, A. K. Sangaiah, W. Zhang, and J. Zhang,
“Ransomware classification using patch-based cnn and self-attention net-
work on embedded n-grams of opcodes,” Future Generation Computer
Systems, vol. 110, pp. 708–720, 2020.

[13] S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi,
and J. Yang, “Threatrace: Detecting and tracing host-based threats in
node level through provenance graph learning,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 3972–3987, 2022.

[14] [Online]. Available: https://virusshare.com/research
[15] [Online]. Available: https://www.virustotal.com/gui/home/upload
[16] D. Nandakumar, D. Quinn, E. Soba, E. Kim, C. Redino, C. Chan,

K. Choi, A. Rahman, and E. Bowen, “Foundational models for malware
embeddings using spatio-temporal parallel convolutional networks,”
arXiv preprint arXiv:2305.15488, 2023.

[17] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” arXiv preprint arXiv:1810.00826, 2018.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[19] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph con-
trastive learning with augmentations,” Advances in neural information
processing systems, vol. 33, pp. 5812–5823, 2020.

[20] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch net-
works for multi-task learning,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 3994–4003.

[21] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
conference on machine learning. PMLR, 2020, pp. 1597–1607.

[22] J. Deng, J. Guo, T. Liu, M. Gong, and S. Zafeiriou, “Sub-center arcface:
Boosting face recognition by large-scale noisy web faces,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XI 16. Springer, 2020, pp. 741–757.

[23] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,” ACM
Transactions on Graphics (tog), vol. 38, no. 5, pp. 1–12, 2019.

[24] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv
preprint arXiv:1611.07308, 2016.

https://virusshare.com/research
https://www.virustotal.com/gui/home/upload

	Introduction
	Review of the Literature
	Data Structuring
	Simulation
	Unified Representation
	Alert Graph Construction

	 Methodology 
	Pipeline
	Initial Embedding Architecture
	Subsequent Embedding Architecture
	Classifier Architecture

	Sampling Algorithm
	Training Algorithm
	Initial Embedding Training
	Subsequent Embedding Training and Classification Training
	HyperParameter Tuning
	Motivation


	Results
	Baseline Modeling

	Conclusion, Limitations, Future Work
	References

