
Digital
modernization 2021
A tech accompaniment piece
May 2021

Digital modernization 2021 | A tech accompaniment piece

02

A successful digital modernization incorporates
business drivers, team topologies, and technical
aspects. Thus, any modernization journey
immediately becomes a multifaceted, cross-
organizational effort that affects anyone within
an enterprise. In this report, we discuss some of
these aspects and detail the important role they
play in digital modernization. We selected topics
ranging from team organization and application
portfolio management to software architecture and
deployment to provide a holistic view of modernizing
an enterprise’s application landscape.

This paper discusses selected aspects from digital
modernization. For a more general point of view see
www.deloitte.com/us/digitalmod-report-2021.

02

Digital modernization 2021 | A tech accompaniment piece

Digital modernization 2021 | A tech accompaniment piece

03

Autonomous teams

Team structure is key to successful software
development. Conway’s Law from 1968 states
that you will find a copy of an enterprise’s
communication structure in its application
code. More than 60 years later, this still holds
true. Recently, Skelton and Pais1 have shown
that modern team structures immediately
lead to sustainable software architectures:
Autonomous teams create so-called team
APIs, keeping complexity within the domain,
the team, and the code, away from the rest of
an organization.

This change in organizational culture—
organizing teams vertically along business

functionality rather than horizontally by
technical expertise, as shown in figure 1—
fosters business value as well. There are
several examples demonstrating the benefits
of matching software architecture and team
structure, such as at Amazon AWS2 or Spotify.3

Adersberger and Siedersleben4 come to
the same conclusions. They state that
developing cloud-native applications based
on microservices leads to organizational,
methodological, and technological changes
for a client, which can be a major roadblock
if done incorrectly. However, this can be
mitigated by actively investing in development
and management know-how.

The relationship between modernizing
applications and implementing
organizational changes might not be
visible initially. However, it is a crucial part
of modernization projects that must be
addressed in early phases. Otherwise,
acceptance of a project may suffer, and
willingness to contribute may degrade. The
software industry has developed powerful
tools to introduce modern development
methodologies in legacy mainframe
environments as well, offering the benefits
of a modern development environment
even in the early phases of a modernization
process. Many successful implementations
of these tools are found throughout client
installations Deloitte has delivered.

Figure 1. Horizontal (top) and vertical (bottom) team structures5

Front-end tier

Back-end tier

Back-end tier

Storage tier

Front-end tier

Storage tier

A B C

D E

F G

Team 1

Team 1 Team 2 Team 3

Team 2

Team 3

A B C

D’ D’’ E

F’ G’ G’’

Digital modernization 2021 | A tech accompaniment piece

04

Application Portfolio
Matrix

One key aspect of developing a client’s
journey to the cloud is determining how
valuable applications are. For this, Deloitte
uses the Application Modernization Cloud
Adaption Framework (figure 2). It evaluates
how certain parts of a client’s application
portfolio can be transitioned into cloud-
native environments, keeping or even
increasing the value of an application.
An important stage of the journey is to
determine the contribution to business
value (both day-to-day and strategic) using
the Cloud Adaption Framework.

The foundation for this framework is the
Application Portfolio Matrix (figure 3) as
introduced by Ward and Peppard.6 Based on
the individual contribution, an application
can be mapped to four quadrants:

	• Strategic applications (high strategy,
high value contribution) are the essential
drivers of the current and future business.

	• The high potentials (high strategy, low
value contribution) play a pivotal role in
the future of the business. Often, these
applications are merely experimental
and thus are considered tryout projects,
internal proofs of concept, or in beta.
Some of them may also be dead-end.

	• Key operational applications (low strategy,
high value contribution) keep the current
business going. All business functions,
such as billing systems, ERP systems, or
CRM systems, must work reliably, as they
are responsible for the foundation of
the enterprise.

	• Supporting applications (low strategy, low
value contribution) are those supporting
non-differentiating business, such as
payroll. Applications in this quadrant must
be efficient and cost-effective.

The matrix helps determine the overall
business value of an application. It provides
a first impression of how the value of
the overall application can be increased.
Ward and Peppard suggest the following

procedures based on the quadrants—also
as found in the Deloitte framework:

	• Applications in the support quadrant are
candidates for divestment, cost reduction,
or increasing efficiency. Relevant
functionality can be removed, and the
remaining functionality is either no longer
required (and thus subject to divestment)
or can be replaced by commercial off-the-
shelf (COTS) software.

	• High potentials are also candidates for
cost reduction; however, their potential
must be evaluated on a regular basis. If
the potential is still high, there must be a
transformation toward strategic, or the
application is divested. As an example,
such a transformation can consolidate the
valuable part of the application into an
existing, strategic application.

	• For all strategic applications, the focus
is on maintaining or increasing technical
health (for example, by refactoring or
rearchitecting the application). Typically,
strategic applications are constantly

Figure 2. Application Modernization Cloud Adaption Framework

H
ig

h
St

ra
te

gi
c

bu
si

ne
ss

 p
ot

en
ti

al

High

Lo
w

Low Fit with current business requirements

Prototype to production

Seize opportunities for quick wins to prototype and
innovate using new technologies or business paradigms

• Improve agility to test the ROI of bold plays

High potential

Differentiated

Rearchitect or build new to change business
functionality to take advantage of cloud-native

• Exploit the full advantages of cloud to optimize
development, deployment, and operation and
reduce technical debt, including redundant code

Strategic

Sunset

Remove functionality that is no longer used

• Reduce technical debt and streamline operations

Support

Stable

Reuse existing functionality that works well, use
automation to fit to target technology where required

• Reduce risk and retain functionality with a more
cost-effective and modern infrastructure

Key operational

Digital modernization 2021 | A tech accompaniment piece

05

enriched with new functionality or are
targets for ingesting functionality from
other quadrants.

	• Finally, key operational applications should
focus on reliability and availability, and
are thus candidates for moving toward a
resilient and scalable infrastructure, as
well as maintaining technical health.

In the field, a few approaches exist to assist
in creating this matrix. Some automatically
capture the metrics required for deriving the
technical health of an application. Deloitte’s
solution, Application Modernization
powered by innoWake™, is an automated
one that has been successfully employed at
an enterprise scale.

Underrated aspects of
modernization

The relevance of some aspects of
application modernization (for example,
feature usage and UI modernization) tends
to be underestimated. In our engagements,
we also take care of those aspects when
designing and implementing a cloud road
map, as follows:

Reassess feature usage. When looking
at custom-developed software, individual
functionality constantly changes over time.
However, we often see clients add capabilities
without ever retiring anything unused. This
leads to code bloat. Also, business processes
(or certain branches thereof) can still be
present, but no longer actively used (e.g.,
calculation routines for insurance policies
with only terminated contracts). A similar
experience has been shared recently by
ThoughtWorks’ Tech Radar.7 They state that,
according to a report published by Standish
Group,8 the majority of functionality (about
50%) is unused. For modernization efforts,
they suggest giving up on feature parity
between legacy and modernized architecture
and investing the effort in understanding end
users’ needs by “conducting user research
and applying modern product development
practices rather than simply replacing the
existing [functionality].”7

The role of UI modernization. A well-
designed user interface (UI) contributes
to the success of an application. A UI acts
as the access point for an application’s
functionality and is hence a defining piece of
the overall user experience.9 When it comes
to internal applications, however, companies
all too often erroneously reduce the UI to its
colors and do not see the need to invest in
them, since none of its clients will ever see
it. The truth is, however, that well-crafted UIs
are far more than merely pleasant to look
at. When done well, UIs render applications
highly usable, thereby increasing employees’
productivity, efficiency, and overall
satisfaction.10 The UI shapes how users
perceive the application, including its ease
of use, usefulness, or quality. And the
more positive these perceptions are, the
higher users’ initial acceptance, current use,
future use, and overall satisfaction with the
application, all of which contribute
to realizing the anticipated business
benefits.11, 12, 13 With a well-designed UI,
an application becomes self-explanatory,

thereby reducing the need for and
associated costs of training, documentation,
and support. It also reduces the need for
special onboarding, as new employees
usually know how to interact with recent
applications. Higher satisfaction with an
application (and thus with the workplace)
further lowers employee turnover and,
correspondingly, hiring costs.14

Service decomposition

Clients receive valuable insights when
analyzing their applications using mining
tools. An example is the so-called social
graph, a color-coded visualization of
dependencies between application parts.
Figure 4 shows a social graph whose colors
denote which software modules belong to a
given application or business functionality:
a codebase containing three different
applications (yellow, green, and blue), as well
as some technical aspects (red—in this case,
a database abstraction layer).

Figure 3. Application Portfolio Matrix

Support
Sunset

High potential
Prototype to production

Strategic
Differentiated

Key operational
Stable

0 1 2 3 4 5 6 7 8 9 10
Value contribution

0

1

2

3

4

5

6

7

8

9

10

St
ra

te
gy

 c
on

tr
ib

ut
io

n

Costs

10

50
100

Technical quality

Poor Good

Environment

Mainframe

Open systems

Cloud

Failed PoC

New
idea

ECM

ERP

NG business

CRM

Payroll

Unique app

Digital modernization 2021 | A tech accompaniment piece

06

This graph gives valuable insights into
how to start decomposing into services,
a crucial step of any modernization to
microservices. During this step, the existing
monolithic application is decomposed into
business domains (i.e., fully functional units
handling exactly one business). Lilienthal5
states that, for a successful decomposition,
domain-driven design (DDD) is important,
as it provides significant guidance for
decomposing an application into functional
domains. In DDD, the functional domains
are typically referred to as bounded
contexts. The functional decomposition and
the relationship between these contexts

are the fundamental building blocks of a
microservice architecture.

Within one bounded context, the notion
of a concept is identical, whereas across
contexts, this may vary. For example,
picture the concept of a customer object
across the sales, booking, and marketing
departments of a travel agency. In each
of these contexts, a customer may have
distinguishing properties (beside some
shared properties). Thus, a customer object
is more a lead object in the sales context, a
passenger object in the booking context, and
a subscriber object in the marketing context.

Once bounded contexts are established,
architects must handle cross-cutting
concerns between contexts by establishing
appropriate APIs (and teams). Software
solutions exist to help architects and
developers derive this information in well-
integrated packages by using previously
mined data, as well as by suggesting
candidates for contexts and how service
interfaces may be established between
contexts. Figure 5 shows an example.
Deloitte has been successfully using its
innoWake™ tools to achieve these goals.

Figure 4. Social graph

Digital modernization 2021 | A tech accompaniment piece

07

Decentralized data
management

Because of functional decomposition, all
affected data requires decomposition as
well. In a typical microservice architecture,
access to the data owned by the service
is hidden behind the service API. Any
functionality related to persistence, including
the data, schema, and database access, is
completely encapsulated by the service.

Database modernization incurs schema
changes, data redistribution, data migrations,
and other long-running operations.
Furthermore, during transition to a
decomposed database, there may be issues

with data synchronization, transactional
integrity, latency, and more. If mainframe
data sources are part of the journey,
complexity may increase, particularly
if data models uncommon outside the
mainframe world, like IMS/DB, must be
migrated. Moreover, program logic in
stored procedures can also be a pitfall, and
there may be recommendations to remove
database logic and pull the functionality out
and into the service.

Experience shows that data migration can
be a cumbersome task. We agree with
Richardson,15 who states that the number
of data migrations should be kept as low
as possible, especially with incremental
modernization. His mantra, “functionality

Figure 5. Monolith cutter screenshot

first, data last,” is an integral part of any
data decomposition strategy. Rather
than assigning physical databases to
microservices, data virtualization techniques
support creating a virtual database. The
physical reorganization of the data is done
when the modernization reaches a steady
state, justifying the efforts of costly
data migration.

Micro-frontends

Further applying vertical decomposition (by
also including the user interface) results in
the micro-frontend architecture. Rather than
having a monolithic frontend, as is typically
found with single-page applications (SPA),
the functional decomposition is also visible
in the frontend, which forms a composite UI,
as shown in figure 6.

This fosters encapsulation of service
internals, resulting in an even more
manageable service, as the codebase
is further decoupled. Jackson17 defines
micro-frontends as “an architectural style
where independently deliverable frontend
applications are composed into a greater
whole.” He states that this style results in
“smaller, more cohesive and maintainable
codebases [and] the ability to upgrade,
update, or even rewrite parts of the
frontend in a more incremental fashion.”
Individual micro-frontends are integrated as
parts of a user-facing container application;
the integration with the backend services
is done using API gateways. Figure 6 shows
various solutions for implementing micro-
frontends as suggested by Jackson.17

Software solutions provide rapid UI
development frameworks that embrace
the micro-frontend pattern and even allow
for integration with refactored applications
still employing “green-screen terminal”
semantics. Deloitte has successfully
refactored applications using this approach.

Digital modernization 2021 | A tech accompaniment piece

08

Event-driven microservice
architecture

Microservice architectures have seen
increasing adoption in recent years.
According to a study by Lightstep18 in 2018,
microservices have become mainstream in
enterprise applications, even though there
are challenges. The main driver, according
to 82% of the interviewed development
stakeholders in the study, is agility. However,
nearly everyone surveyed (99%) experiences
daily challenges with microservices,
especially troubleshooting (seen as 73%
harder). The benefits and challenges of
a microservice architecture have been
extensively discussed by Newman.19 He
concludes that microservices are not a silver
bullet, as complexity increases compared
with monolithic applications.20 However,
modern frameworks like Micronaut may
successfully mask this complexity.

Davis21 considers event-first architectures
as the most prominent cloud-native
pattern, as they change the way software

is developed. Rather than focusing on a
request-response paradigm, event-driven
architectures rely on the event-reaction
paradigm. Here is an analog: With request-
response, when you enter a room, you
flip the switch (request), and a light turns
on (response). In an event-first world, you
enter a room, generate a “room entered”
event (using a presence detector), and the
light switches on (reaction). This inversion
of responsibility is a fundamental paradigm
shift. It provides developers and business
experts a representation of the real world
and allows them to model use cases for how
humans think, not how technology forces
them to think.

For a modernization project, the
evolutionary aspects of a microservice
architecture are very interesting. As
service internals, including the data, are
completely hidden behind a service API,
the implementation can change over time.
Developers can initially deploy legacy code,
wrapped within an anticorruption layer or
service façade, and subsequently refine the
code. With such an evolutionary approach,

a single service can be very quickly exposed
for a short time to market.

We are embracing this evolutionary aspect
in our modernization engagements. Our
standardized, yet highly customizable
approach uses event-driven architecture
to provide the technical foundation for an
iterative modernization.

Figure 7 shows an example of such an
architecture. In this example, various
services, each in its own architectural flavor,
coexist with refactored legacy applications,
as well as existing mainframe applications.

The event-driven backplane is responsible
for transporting events across applications.
With events being first-class citizens of
such an architecture, the backplane can
be used to capture an audit trail across
all applications. This can be useful for
regulatory compliance (an aspect that is
typically spread across the whole codebase
in legacy applications), as well as for logging
and tracing for troubleshooting issues. Like
a write-ahead log in relational database

Figure 6. Iterations of a modernization16

Frontend

Backend

µF
E

1

µF
E

3

µF
E 2

Fro
nte

nd
Tie

r

Front-end tier

Back-end tier

Storage tier

Monolith

Monolith Frontend and backend Microservices Micro-frontends

Frontend

Container

API gateway API gateway

M
ic

ro
-

se
rv

ic
e

1

M
ic

ro
-

se
rv

ic
e

2

M
ic

ro
-

se
rv

ic
e

3

M
ic

ro
-

se
rv

ic
e

1

M
ic

ro
-

se
rv

ic
e

2

M
ic

ro
-

se
rv

ic
e

3

Digital modernization 2021 | A tech accompaniment piece

09

systems, the audit trail can be used to
reproduce the application state at a given
time, allowing for time travel across a whole
enterprise application. As a side effect,
services can recover from outages by
replaying the audit log appropriately.

Event-driven architectures are inherently
designed for integration with other
applications. In the previous example, the
mainframe uses change data capture (CDC),
a noninvasive technique for adapting existing
applications to the event-driven world.

Richardson15 recommends using
technologies like command/query
responsibility segregation (figure 8) or event
sourcing for modernizing monoliths to
microservices. Both architectural patterns
prescribe a strict split within a microservice
and suggest isolating the command and
query components from each other. As
a rule of thumb, commands change the
internal state of a microservice, whereas
queries retrieve the internal state. Queries
are always free of side effects; thus, they
must not change the state.

The capabilities of CQRS and event sourcing
can be exploited during application
modernization. First, the existing monolith
can still be the command part of the
application, containing the business rules
changing the application state. However,
the query part can be implemented by a
new microservice. Second, the business
rules for an application are collocated within
the command handler. The query part
can evolve independently, as new query
functionality can be added without touching
the business rule. Third, when releasing a
new version of the application, the internal
state can be built up by replaying the event
store rather than migrating data. This is
handy if the persistence schema changes
within two subsequent versions of a service.

Industry specialists have developed solution
portfolios that contain several tools to
facilitate the implementation of event-driven
architectures. Deloitte’s innoWake Legacy
DevOps provides middleware and adapters
for integrating mainframes. With innoWake
Discovery and Mining solutions, we use
automated diagnostic tools to understand

and capture information, while innoWake
Transformation provides solutions for
rapidly moving legacy code to modern
programming languages.

Serverless deployment
for microservices

Castro et al.22 define serverless as follows:
“Serverless computing is a platform that
hides server usage from developers and
runs code on-demand automatically scaled
and billed only for the time the code is
running.” They also state that developers
using serverless computing can get cost
savings and scalability without requiring a
high level of cloud computing expertise. It
allows developers to focus on developing
business logic and lets the cloud provider
scale the computing and storage resources.
The cost savings are incurred as payment
is only required for consumed computing
power, in contrast to preallocated virtual
machines. A study by Kilcioglu et al.23
claims significant overprovisioning in such
preallocated environments, resulting

Figure 7. Architecture overview

Front-end
tier

Back-end
tier

Storage
tier

Layered (CRUD)
(noncore domain)

UI layer API API API API

Service
wrapper

DDD and hexagon
(core domain)

CQRS architecture
(core domain)

Modulith
(refactored legacy)

Mainframe monolith
(partially wrapped)

Business layer

VDB VDB

DB
DB

State Query

Data access layer

M
od

ul
e

1

M
od

ul
e

2

M
od

ul
e

3

Ports and
adapters

Read
model

Write
model

CD
C

Data virtualization

Composite UI 3270

Domain A Domain B Domain C Multidomain Multidomain

Monolith

Event
ingestion

Real-time
analytics

Internal messaging

Event-driven backplane

Digital modernization 2021 | A tech accompaniment piece

10

Conclusion

Digital modernization is not a sprint, but
a marathon. A multitude of aspects must
be addressed, and a lot of decisions
must be made. Thus, knowing the pitfalls
and addressing them early reduces the
overall risk of a modernization journey.
This paper points out some common
elements of large modernization, but as
each environment is unique, specialties
must be known and considered.
Consequently, the most crucial step
of a modernization story is to carefully
assess the existing environment and
plan a sound modernization strategy.
This way, you can burn the phoenix of
legacy applications so it may rise from
the ashes as a revival of your business in
the cloud.

in unused, but paid computing power.
Serverless computing allows for true pay-
as-you-go pricing, where currently unused
applications do not incur any costs.

In other words, serverless deployment
is one of the prominent techniques of a
cloud-native technology stack. According to
Adersberger and Siedersleben,4 a decent
cloud-native technology stack “abstracts
away the complexity of a cluster by making
it look like one single, huge machine.” Thus,
cloud vendors provide instant resource
availability based on workload demands.
The workloads can be distributed based on
expected resource utilization, leveraging
elastic environments that allow for dynamic
adaption to increasing or decreasing
resource requirements. Elastic environments
are still a form of preallocated environment,
as they are still initially scaled for the average
load. As computing instances for serverless

applications are dynamically scheduled by
cloud providers, the microservices must
be truly stateless—a best practice already
devised by Hamilton24 in 2007.
With the advent of serverless computing, a
real pay-per-use model can be employed.
If an application is currently not required, it
immediately gets “scaled to zero,” incurring
no cost for computing power. Castro et
al.22 compiled a list of projects where the
transition from virtual-machine-based
environments to cloud-native, serverless
computing significantly drops the overall
costs of an application; the highest cost
savings achieved was 94%.

The serverless paradigm is currently
extended to other cloud-managed services;
the majority of cloud providers are providing
serverless storage and serverless databases
as integrated parts of their cloud-native
technology stack.

Figure 8. Microservices with CQRS and event sourcing

Presistence
event handler

Event
store Query

storage

Command endpoint

Command handler Query handler
Domain
model

Query endpoint

Co
m

m
an

d

Publish
domain
event

Co
m

m
an

d

Re
su

lt

Re
su

lt

Q
ue

ry

Co
ns

um
er

Pr
od

uc
er

Update

Re
adPersist

state Publish
persistence event

Co
m

m
an

d
m

od
el

Q
ue

ry
 m

od
el

Event-driven backplane

Digital modernization 2021 | A tech accompaniment piece

11

Endnotes
1.	 M. Skelton and M. Pais, Team Topologies (Portland: IT Revolution, 2019).

2.	 K. Lane, “The Secret to Amazon’s Success: Internal APIs,” Apievange List, January 12, 2012.

3.	 H. Kniberg and A. Ivarsson, Scaling Agile @ Spotify with Tribes, Squads, Chapters & Guilds, October 2012.

4.	 J. Adersberger and J. Siedersleben, “The Cloud Native Stack: Building Cloud Applications as Google Does,” in Digital Marketplaces Unleashed (Berlin: Springer, 2018), pp.
711–713.

5.	 C. Lilienthal, “From Monoliths to Modular Architectures and Microservices with DDD,” JAX London, September 30, 2019.

6.	 J. Ward and J. Peppard, Strategic Planning for Information Systems (Chichester: John Wiley & Sons Ltd, 2002).

7.	 ThoughtWorks, Inc., “ThoughtWorks Radar Vol. 21,” November 2019.

8.	 The Standish Group International, Inc., Exceeding Value, August 25, 2014.

9.	 D. Norman and J. Nielsen, “The Definition of User Experience (UX),” NN Group, accessed April 2020.

10.	 J. Anderson, J. McRee, and R. Wilson, Effective UI: The Art of Building Great User Experience in Software, O’Reilly Media, Inc., 2010.

11.	 F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User Acceptance of Computer Technology: a Comparison of Two Theoretical Models,” Management Science 35, no. 9,
(1989): pp. 982–1003.

12.	 W. H. Delone and E. R. McLean, “The DeLone and McLean Model of Information Systems Success: a Ten-year Update,” Journal of Management Information Systems 19,
no. 4 (2003): pp. 9–30.

13.	 L. Deng, D. E. Turner, R. Gehling, and B. Prince, “User Experience, Satisfaction, and Continual Usage Intention of IT,” European Journal of Information Systems 19, no. 1
(2010): pp. 60–75.

14.	 J. Ross, The Business Value of User Experience, Infragistics, January 2014.

15.	 C. Richardson, Microservices Patterns (Shelter Island: Manning, 2019).

16.	 F. G. Diaz, “Micro-frontends Using Vue.js, React.js, and Hypernova,” Medium, February 28, 2019.

17.	 C. Jackson, “Micro Frontends,” Martin Fowler, June 19, 2019.

18.	 Lightstep, “Global Microservices Trends Report: A Survey of Development Professionals,” Lightstep, April 2018.

19.	 S. Newman, Building Microservices: Designing Fine-Grained Systems (Sebastopol: O’Reilly, 2015).

20.	 S. Newman, Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith (Sebastopol: O’Reilly, 2019).

21.	 C. Davis, Cloud Native Patterns: Designing Change-Tolerant Software (Shelter Island: Manning, 2019).

22.	 P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The Rise of Serverless Computing,” Communications of the ACM 62, no. 12 (2019): pp. 44–54.

23.	 C. Kilcioglu, J. M. Rao, A. Kannan, and R. P. McAfee, “Usage Patterns and the Economics of the Public Cloud,” in Proceedings of the 26th International Conference on
World Wide Web, Perth, 2017.

24.	 J. Hamilton, “On Designing and Deploying Internet-Scale Services,” USENIX Association, November 11–16, 2007.

Contacts

Thorsten Bernecker
Principal
Deloitte Consulting LLP
+1 512 226 4418
tbernecker@deloitte.com

Stefan Aulbach
Lead architect
Deloitte Consulting LLP
+49730792190139
saulbach@deloitte.com

Arne Gerhard
Senior manager
Deloitte Consulting LLP
+1 214 840 1887
agerhard@deloitte.com

https://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
https://blog.crisp.se/wp-content/uploads/2012/11/SpotifyScaling.pdf
https://jaxlondon.com/blog/from-monoliths-to-modular-architectures-and-microservices-with-ddd/
https://assets.thoughtworks.com/assets/technology-radar-vol-21-en.pdf
https://www.standishgroup.com/sample_research_files/Exceeding Value_Layout.pdf
https://www.nngroup.com/articles/definition-user-experience/
http://www.infragistics.com/media/335732/the_business_value_of_user_experience-3.pdf
https://medium.com/js-dojo/micro-frontends-using-vue-js-react-js-and-hypernova-af606a774602
https://martinfowler.com/articles/micro-frontends.html.
https://go.lightstep.com/global-microservices-trends-report-2018.html.
https://www.usenix.org/legacy/event/lisa07/tech/full_papers/hamilton/hamilton_html/

This publication contains general information only and Deloitte is not, by means
of this publication, rendering accounting, business, financial, investment, legal,
tax, or other professional advice or services. This publication is not a substitute
for such professional advice or services, nor should it be used as a basis for any
decision or action that may affect your business. Before making any decision or
taking any action that may affect your business, you should consult a qualified
professional adviser.

Deloitte shall not be responsible for any loss sustained by any person who relies
on this publication.

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK
private company limited by guarantee (“DTTL”), its network of member firms,
and their related entities. DTTL and each of its member firms are legally
separate and independent entities. DTTL (also referred to as “Deloitte Global”)
does not provide services to clients. In the United States, Deloitte refers to one
or more of the US member firms of DTTL, their related entities that operate
using the “Deloitte” name in the United States, and their respective affiliates.
Certain services may not be available to attest clients under the rules and
regulations of public accounting. Please see www.deloitte.com/about to learn
more about our global network of member firms.

Copyright © 2021 Deloitte Development LLC. All rights reserved.

