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Main body: All medical specialties have an inherent, intrinsic 
risk of missed diagnosis that has an impact on health care, and 
radio diagnosis is not immune to this risk. This paper discusses 
the challenges faced in the field of radiology, a global radiologist 
shortage, and an ever-aging human population that requires more 
health care. All the factors combined put more pressure on the 
already overworked medical professionals, including radiologists. 
This paper also captures the steady losses incurred by health care. 
Google Medical Imaging Suite provides solutions that can mitigate 
these challenges to a great extent and provide overall efficiency to 
the health care systems. 
 
Conclusion: Google MIS can accelerate imaging diagnostics 
and reduce burden on radiologists by imaging analysis, thereby 
improving access to better patient care and outcomes.

Abstract
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Per the Radiology Society of North America, the leading 
cause of errors by radiologists arise from errors in 
diagnosis, not procedural complications or failures to 
communicate or recommend additional studies.[1]

Referrer

Procedural Complication

Peripheral Role

Inadequate Communication

Failure to Recommend 
Additional Testing

Error in Diagnosis 9.72

Diagnostic errors 

Challenges in the 
field of radiology 
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Under-reading 
Abnormality visible but not reported

Faulty reasoning 
Abnormality identified but attributed to wrong cause

Abnormalities outside area of interest (but visible) 
Many on first or last image of CT or MR series, suggesting 
radiologist’s attention not fully engaged at beginning or end  
of reviewing series

Satisfaction of report (alternative reasoning) 
Uncritical reliance on previous report in reaching diagnosis, 
leading to perpetuation of error through consecutive studies

Failure to consult prior imaging studies

Inaccurate or incomplete clinical history

Correct report failing to reach referring clinician

Others

0.08%

6.92%

2%

5%

6%

7%

9%

22%

42%

Satisfaction of search 
After having identified a first abnormality, 
radiologist fails to continue to look for 
additional abnormalities

As per Kim & Mansfield 
below is the radiologic error 
categorization, 2014.[2]
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Global radiologist shortage: 
The annual growth rate of radiologists in the 
United States between 2010 and 2020 entering 
the workforce is only 2.5%[3] with 29,530 
radiologists as of May 2021. This equates to about 
one radiologist serving 11,200 people in the 
United States. The US House of Representatives 
introduced the Resident Physician Shortage Act 
of 2021.[4] Europe has 13 radiologists per 100,000 
population, but in the United Kingdom, the rate 
is only 8.5 per 100,000. In some other countries 
like Malaysia this number can be around 30 
radiologists per million.[5]

Visual fatigue: 
Krupinski and the co-authors established that 
long radiology workdays reduce detection and 
accommodation accuracy.[6]

Factors contributing to radiology error 

Mental fatigue: 
Excessive continuous-duty shifts and work 
hours for many health care professionals 
combined with sleep deprivation has been 
shown experimentally to produce effects on 
certain mental tasks equivalent to alcohol 
intoxication.[7] Continuous prolonged decision-
making results in decision fatigue and leads to 
unconscious taking of shortcuts in cognitive 
processes, resulting in poor judgment and 
diagnostic errors. Radiology trainees providing 
preliminary interpretations during off-hours 
are especially prone to this effect.[8]

Inattentional blindness: 
Research at Harvard University’s Visual 
Attention Lab established that inattentional 
blindness describes the phenomenon wherein 
observers miss an unexpected but salient 
event when engaged in a different task.[9]
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Distribution drift: 
Medical imaging lacks standardized 
acquisition protocols, and there is a 
large variation in terms of equipment 
and scanning settings. This leads to the 
“distribution drift” phenomenon.[10] 

Isolated data: 
Due to requirements around patient privacy, 
imaging data is distributed across different 
hospitals and imaging centers.[11]

Heterogeneous and imbalanced 
samples: 
The ratio between positive and negative 
samples is extremely uneven. For example, 
the number of pixels belonging to a tumor is 
usually one to many orders of magnitude less 
than that of normal tissue.[13] 

Noisy labels: 
Labeling or annotation of medical images 
can be nonstandard and time consuming. 
Because of variable experience and different 
conditions, both inter-user and intra-user 
labeling inconsistency is high, resulting in 
noisy labels.[12]

Other technical 
challenges
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Ever growing imaging data: The amount of medical data produced every year is huge, and 
the rate of growth is exponential. The 2020 global annual pre-COVID estimate for health care 
data was around 2,314 exabytes and an expected compound annual growth rate (CAGR) by 
2025 is 36%.[14] A linear extrapolation of growth shows that there will be 6,035 exabytes of 
health care data produced in 2025, with 90% of that consisting of medical imaging.[15]

Each medical image frame typically ranges from 8 to 50 
megabytes[16] and taking the high end of that would mean 
119.6 trillion images.

Aging population increases imaging needs: According 
to the World Health Organization, the proportion of the 
world’s population over 60 years of age will be 22% by 2050, 
nearly double that of 2015.[17]

Ever growing workload on medical staff: To put things 
in perspective, at the low end it takes about 15 minutes[18] 
for a radiologist to process simpler images (such as for 
pneumonia) and longer for more complicated cases.  
It would take 3.4 billion radiologists working 24 hours 
a day, 7 days a week, 365 days a year, to process all the 
data in 2025 manually.

Future of radiology 
without AI/MIS

F O R E C A S T E D  H E A L T H C A R E  D A T A  P E R  Y E A R

Data / year (exabytes)

CAGR

3.4 Billion Radiologists  
Working 24 / 7 / 365

119.6  
Trillion  

Images

29.9 Trillion Hours

15  
Minutes 
per image

X
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Google Cloud: Google Cloud Platform is a suite of cloud-
computing services that runs on the same infrastructure that 
Google uses internally for its end-user products.

Cloud Healthcare API allows easy and standardized data exchange 
between health care applications and solutions built on Google Cloud. 
With support for popular health care data standards, such as HL7® 
FHIR®, HL7® v2, and DICOM®, Cloud Healthcare API provides a fully 
managed, highly scalable, enterprise-grade development environment 
for building clinical and analytics solutions securely on Google Cloud. 
The Cloud Healthcare API also includes additional value-added 
capabilities, such as automated DICOM and FHIR de-identification  
(de-ID) to better prepare data for these solutions. 

Cloud healthcare API provides a pathway to intelligent analytics 
and machine learning capabilities in Google Cloud with prebuilt 
connectors for streaming data processing in Dataflow, scalable 
analytics with BigQuery, and machine learning with Vertex AI.

The Cloud healthcare API is backed by Google Cloud’s privacy and 
security features, supports HIPAA compliance, and is in scope for 
Google Cloud’s ISO/IEC 27001, ISO/IEC 27017, and ISO/IEC 27018 
certifications. In addition, Google Cloud is HITRUST CSF certified.[19] 

Google Cloud 

Cloud Healthcare API

https://cloud.google.com/dataflow/
https://cloud.google.com/bigquery/
https://cloud.google.com/vertex-ai
https://cloud.google.com/security/compliance/hipaa
https://cloud.google.com/security/compliance/hitrust
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Medical imaging suite(MIS): MIS Platform, offered by Google, is a suite 
of medical imaging components that leverages Google Cloud’s world-class 
infrastructure. MIS offers the following components:

MIS accelerates development of AI for 
medical imaging by making imaging data 
accessible, interoperable, and useful.

• Support convergence of diverse storage  
formats to the DICOM standard

• Seamless integration with on-premises  
storage via NetApp or Change Healthcare  
cloud-native PACS

• AI-assisted annotation environment powered  
by NVIDIA and the MONAI open-source 
framework

• Support healthcare-specific security and 
compliance[20]

Medical Imaging Suite

Imaging storage: Secure, scalable, 
standardized and managed cloud storage 
environment with integrated de-ID

Imaging datasets and dashboards:  
Easily view and search petabytes of data for 
advanced analytics and cohort building

Imaging AI pipelines: Easily transform 
images and annotations into Vertex AI 
datasets for a faster model training process

Imaging deployment: Flexible options for 
cloud, on-prem or edge deployment, and 
real-time insights

Imaging lab: AI-assisted labeling 
and annotation tools to automate 
highly repetitive tasks
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Accelerating imaging diagnostics with 
interoperability: 
Sharing imaging data using Google’s scalable ingestion frameworks 
reduces time and resources to deliver scalable AI/ML.

Reducing the burden on radiologists: 
AI-assisted annotation and labeling automate highly repetitive 
tasks, streamlining radiologist workflow. 

Imaging analysis and datasets: 
Imaging dashboards and datasets allow users to easily search 
petabytes of data for advanced analytics and cohort building.

Privacy and security: 
Ensure protected health information (PHI) and personally identifiable 
information (PII) is protected using Google’s best-in-class security 
frameworks, identity and access management, and VPC Service 
controls. MIS identifies and remediates PII and PHI in images and 
metadata, creating datasets where researchers can analyze data and 
train models without needing internal review board approvals.

Imaging AI pipelines and deployment: 
MIS easily transforms images and annotations into Vertex AI datasets 
for a faster model training process. Flexible options are available 
for cloud, on-prem, or edge deployment. Google Distributed Cloud, 
enabled by Anthos, extends Google Cloud’s infrastructure and services 
to the edge.

Improve access to better patient care  
and outcomes:
Transform disease detection and diagnosis by prioritizing critical 
cases, augmenting treatment decisions, or expanding screenings in 
areas where there are shortages of doctors.

Benefits 
of Medical 
Imaging 
Suite
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Ingest data: MIS is seamlessly integrated with Google Cloud and can 
ingest DICOM images into Cloud Healthcare DICOM Stores through 
Cloud Storage Import or through DICOMWeb GKE Adapter.

Annotate image data: Allow professionals to annotate image data 
within Vertex AI by drawing segments around areas of interest (e.g., 
cancers) using open-source MONAI label on Google Compute Engine 
(see Figure 5, MONAI 3D Slicer).[21]

Enrich image data: Drawing the segment around an area of interest 
is challenging. Various ML models adjust the outline to fit perfectly.

Train model: Create an ML model to find areas of interest (e.g., 
cancer) by training it on the annotated images in Vertex AI. 

Evaluate model: Apply the model to a sample of annotated data  
it has never seen before and see how it performs compared to  
the annotator.

Validate model: Determine which confidence threshold the model 
needs in order to make various business decisions (e.g., notify a 
radiologist of possible cancer). 

Deploy model: Model is deployed to Vertex AI API endpoint to 
respond to applications with predictions. Enable MLOps to measure 
model drift and auto retrain if needed.

Deidentify data: Medical Imaging Suite de-identification pipelines 
use configurable algorithms to identify and redact PHI and PII in 
image data, as well as in extracted DICOM metadata tags.  

How MIS 
meets these 
objectives

Deloitte makes imaging 
data interoperable 
and useful, driving 
accessibility of medical 
images and enabling 
labeling and detection 
and diagnosis of disease

M O N A I  3 D  S L I C E R [ 2 1 ]
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Case studies  
by Deloitte
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Our Approach

• About 1 petabyte of medical images were stored in Cloud 
Storage bucket.

• Deloitte worked with client cloud engineers to create secure 
environment for ingestion of medical images using Google 
Cloud Platform.

• Deloitte was able to ingest and subsequently de-identify 
almost 1 billion image files.

• Deloitte built a pipeline for ingestion and de-identification 
of new images placed in Cloud Storage bucket using Cloud 
Functions and Python.

• For easier user access and analytics enablement, the 
imaging metadata was streamed into a BigQuery data 
warehouse, allowing users to build dashboards on top of 
the BigQuery tables.

• Analytics dashboards were built using Looker; visualizations 
were reviewed and customized per the client team inputs.

• Deloitte trained a machine learning model on a Google-
owned public lung images dataset that can segment areas 
within DICOM instances (i.e., lung nodules to detect cancer) 
and saved the model. PyTorch framework and GCP Jupyter 
Notebooks with 8vCPUs, 30 GB RAM, and NVIDIA Tesla 
V100x1 were used for this. 

Medical imaging ingestion 
and de-identification

Study 1:

Engagement Summary

• Medical Imaging Suite was deployed at a major US health care provider.

• The solution ingested nearly 1 billion image files, more than 500 terabytes, and 
subsequently de-identified images and metadata. 

• DICOM tags were exported to BigQuery for both original and de-identified datasets.

• A segmentation model trained on CT scans was built to detect physical anomalies.

• The model was applied to the provider’s data on Google Cloud production environment.

Key Outcomes 

• De-identification algorithms that met 
client requirements for data privacy 
(excluded images with barcodes and 
maintained key data elements [e.g., 
accession number]) were successfully 
implemented.

• The pipeline for ingestion and de-
identification was moved to production, 
processing about 100K images/hour.

• Dashboard visualizations provided 
insights into image cohorts.

• Required DICOM attributes were 
successfully analyzed and collected.

• The image instance segmentation model 
to detect lung nodules was built.

• The trained model was implemented on 
the provider’s images to plot results.

• The trained model was successfully saved 
and stored; Vertex AI Jupyter notebooks 
with results were implemented to the 
client-owned repository for future use 
and enhancements. 
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Our Approach

• An ML model was developed using Google 
Vertex AI to review all MRI images and 
determine the presence and location of 
brain tumors of various sizes, tissue types, 
locations, and shapes. 

• 3D reconstruction of the 2D DICOM images 
was used to assist the provider in surgery 
planning.

Brain tumor identification 
and location

Study 2:

Engagement Summary

• A federal medical research agency wanted an automated method to 
identify brain tumors in a variety of MRI volume views (i.e., T1, T2, etc.). 
They also wanted to be able to scan their historical images in bulk to 
determine whether any hard-to-detect tumors were present and went 
undetected during their initial review by radiologists. 

• Many of the tumors had indistinct boundaries between malignant tissue 
and healthy tissue and were present in both white matter and grey 
matter, making them difficult to identify.

Key Outcomes 

• The model was able to identify tumors with high 
performance for a sample set of tumors with different 
sizes, shapes, tissue types, and locations in the brain.

• The model was highly scalable. While not deployed into 
production, a model built on Google Vertex AI allows 
it to be deployed to multiple machines to provide 
inferences at scale and meet high demand. It also 
allows the model to be deployed to an API endpoint 
with ease, making MLOps more manageable.

• The model has not yet been deployed for production 
use, but it would be considered for use as the first step 
of tumor identification, with all true positives and false 
positives needing to be reviewed by medical personnel.
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