
Using synthetic data to enhance the 
development of autonomous driving

Some of these incidents can be attributed to rare edge cases that 
are exceptionally difficult to encounter and analyze through real-
world testing alone. Having said that, autonomous vehicles should be 
prepared to handle a wide variety of complex multi-agent interactions, 
adverse weather conditions, construction zones, and other potentially 
hazardous situations.

Collecting sufficient real-world training data to cover this spectrum can 
be an immense challenge. Road testing and manual data annotation 
are likely time-consuming, costly, and may be impractical for capturing 
infrequent events. This is where synthetic data generation is emerging 
as a powerful tool to augment and diversify the training datasets for 
autonomous driving perception systems.

By leveraging advanced simulation platforms, it is possible to create 
virtually limitless permutations of environments, weather conditions, 
sensor configurations, and edge cases, all with precise, pixel-level 
annotations. This capability can allow developers to rapidly iterate, 
test, and validate their autonomous driving solutions, ultimately 
paving the way for safer deployments on public roads.

In fact, synthetic data is expected to play an increasingly important role 
in model training for autonomous driving, fundamentally reshaping the 
automotive industry’s approach to solving data-centric challenges.

Despite the tremendous progress being made in autonomous driving technology, high-profile 
incidents have highlighted some of the significant challenges that remain. From vehicles 
becoming immobilized to tragic pedestrian accidents,1 these events underscore the importance 
of rigorously testing and comparing self-driving systems across a vast array of scenarios.
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Where real-world data falls short
When it comes to model training for autonomous driving, the need 
for high-quality, annotated data is critical. Traditional data collection 
methods involve operating fleets of sensor-equipped vehicles that 
gather data from real-world environments. While effective, this 
approach is plagued by several important issues. First, collecting 
and annotating real-world data is an arduous task that requires a 
significant investment of time and resources. Autonomous vehicles 
can generate up to 8 terabytes (TB) of data per day,3 and the manual 
labor required to label this data is likely unsustainable. Second, 
the range and diversity of scenarios that real-world data is able to 
capture can be limited. Rare edge cases, though infrequent, hold 
disproportionate importance as litmus tests for the robustness  
and safety of autonomous vehicles.

In addition, there are ethical and legal concerns to consider. Data 
privacy regulations are in place for certain types of data, thereby 
limiting the scope of real-world datasets that can be collected 
and used. Biases inherent in real-world data also pose significant 
challenges, particularly when algorithms trained on such data are 
expected to operate in diverse and unpredictable environments. 
For instance, if autonomous driving algorithms are primarily trained on 
data collected from urban environments, they may struggle to navigate 
rural roads or handle scenarios unique to countryside settings.

Why synthetic data should be the way forward
By definition, synthetic data is information generated via computer 
algorithms or simulations, designed to mimic the properties of real-
world data. Unlike traditional data, synthetic data can be generated 
quickly and in large quantities, drastically cutting down on time (up 
to 80% time savings in data generation and validation) and resource 
investments (up to 95% cost savings).4 Notably, synthetic data can be 
obtained directly from simulation platforms complete with ground 
truth labels. This includes labels such as semantic segmentation, in 
which each pixel in an image is assigned to a specific category (e.g., 
“car” or “road”); bounding boxes, which are rectangular coordinates 
that identify the location and size of an object in an image; and 
point clouds, which are a set of data points in space often used in 
3D modeling or computer vision to represent the external surface 
of an object or environment. The inclusion of ground truth labels 
within the simulation is important for streamlining the annotation 
process and accelerating algorithm training in various industries, 
including autonomous driving. Moreover, synthetic data offers a 
controlled environment to run a wide range of scenarios, helping 
capture real-world situations such as chairs flying across a highway 
or a jaywalking pedestrian. Finally, the risk of data privacy issues is 
eliminated because synthetic data is generated and not collected. 
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Figure 1: Growth of synthetic data use for AI models 
(2020 – 2030F)

Source: Gartner2
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Creating synthetic data with an open-source autonomous 
driving simulator
The integration of synthetic data into the development process of 
autonomous driving systems underscores a broader industry trend 
toward leveraging digital simulations to overcome the constraints of 
real-world data collection. Open-source simulators for autonomous 
driving research are emerging as essential tools in this arena. Open-
source simulators not only provide a foundational suite of assets 
and vehicles, but also invite expansion to encapsulate a broader 
spectrum of real-world scenarios. By integrating and enhancing 
open-source simulator capabilities with additional assets, diverse 
environments and conditions can be simulated with a high degree 
of realism. This augmentation process broadens the simulated 
scenarios available, which is imperative for training robust and 
reliable autonomous systems.

Phase 1: Object development
Static objects are designed using an open-source 3D computer 
graphics software tool, helping ensure a high level of detail in 
textures and aesthetics. Each object is then assigned unique tags, 
making them identifiable for tasks like semantic segmentation. 
Within a 3D computer graphics game engine, Deloitte researchers 
established a hierarchical folder structure that houses these created 
assets along with their materials and textures. As these objects were 
integrated into an open-source simulator, the material and texture 
settings were replicated to maintain a coherent visual experience.

For dynamic assets, like vehicles, the process begins by retrieving 
vehicle skeletons from an open-source simulator’s repository. These 
skeletons act as the structural basis upon which 3D models are 
constructed. One of the key steps involves the careful process of 
binding and alignment in the vehicle model. This procedure helps 
ensure the different parts of the vehicle fit together accurately and 
move in relation to each other, producing a realistic depiction of 
physics and movement. This process is essential for the model to 
behave and interact with its environment in a manner that mimics  
a real-world vehicle.

Phase 2: Integration into open-source simulator’s inventory
Once the modeling is complete, the assets are exported as tailored 
FBX files. This is followed by the detailed configuration of various 
parameters such as physics, animations, and skeleton, preparing the 
vehicle for its final integration into an open-source simulator’s native 
vehicle factory.

Phase 3: Simulation and data collection
The simulator offers diverse virtual environments, known as “towns,” 
each mimicking real-world scenarios from busy urban areas to rural 
settings. These towns can be populated with dynamic entities like 
vehicles and pedestrians, providing a robust dataset for training 
machine learning models on various traffic conditions. Additionally, 
the simulator incorporates a range of weather conditions, allowing 
for comprehensive testing of autonomous systems under different 
atmospheric conditions. 

Within these environments, the “ego” vehicle can be autonomously 
navigated through complex scenarios that contain many 
randomizations, collecting ground truth data through integrated 
sensors. These sensors are designed to collect diverse data types. 
Forward-facing cameras provide visual context, while depth sensors 
assist in measuring object proximity. The system also employs both 
semantic and instance segmentation to isolate and differentiate scene 
components and individual objects. Additionally, a simulated light 
detection and ranging (LIDAR) sensor generates a 3D point cloud.

The synthetic data generated covers a broad range of scenarios, such 
as vehicle variations tailored to mimic emergency vehicles and varying 
traffic conditions. It also accounts for occlusions and distant objects to 
capture the intricacies of object visibility. Camera angle randomizations 
offer multiple viewpoints. In addition, the dataset is enriched by 
randomizations in weather and road conditions. The robustness and 
variability of the synthetic dataset was enhanced in a postprocessing 
step by randomly choosing images to undergo geometric and color 
space transformations, as well as noise injection.
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Evaluating the impact of synthetic data on model training
The methodology employed by Deloitte researchers involved using  
a mix of synthetic and real-world data for model training. Initially,  
the model was trained solely on synthetic data, and later it was  
fine-tuned using available real-world data.

To comprehensively evaluate the efficacy of synthetic data, Deloitte 
researchers conducted a study focusing on firetruck detection 
using the fine-tuned YOLOv8 model. The test set included only real-
world images. Ensuing experiments ranged from training models 
exclusively on synthetic data to gradually incorporating real-world  
data. This step-by-step approach led to several key insights:

1. Mean average precision (mAP), precision, recall, F1 score: 
These are all measures of the model’s accuracy. mAP is the 
average precision at different recall levels, precision measures 
what percentage of detections were actually correct, recall 
measures what percentage of actual positives were identified 
correctly, and F1 score is the harmonic mean of precision and  
recall. Fine-tuning with even a small set of real-world data 
improved these measures. 

2. Overfitting mitigation: Overfitting occurs when a model 
learns the training data too well, to the point where it performs 
poorly on new, unseen data. Synthetic data helped create a more 
balanced performance, unlike real-world data, which showed 
tendencies to overfit when the dataset size was small. 

3. Synergy and balance: A careful combination of synthetic and 
real-world data resulted in models that were not only accurate 
but also comprehensive in their detection capabilities. 

Figure 2: Flow diagram—synthetic data evaluation via model training

4. Importance of synthetic dataset size: Increasing the 
synthetic dataset size with various randomizations increased 
performance on all metrics, approaching the performance  
of the models trained only on real-world data, even without 
adding real-world images.

The experiments showed that when real-world data is limited, 
supplementing with synthetic data improved all measures of 
accuracy. Furthermore, in the absence of real-world data, generating  
a diverse and randomized synthetic dataset of sufficient size can 
bring the model’s performance remarkably close to those trained  
on real-world data. This highlights the potential and value of 
synthetic data in enhancing model training and performance.

As the field of autonomous driving continues to progress, synthetic 
data will likely become an invaluable tool for training artificial 
intelligence (AI) models. Extensive experiments using an open-
source simulator have shown that synthetic data can provide a solid 
foundation for model training. It helps to avoid the trap of overfitting, 
allows for specific customization, and can reduce data-related costs, 
particularly for rare or unusual scenarios. Furthermore, blending 
synthetic and real-world data can lead to AI models that are not  
only accurate but also resilient and capable of handling a variety  
of situations. Experiments also underscored the fact that when the 
availability of real-world data is limited, the accuracy of AI models can 
be enhanced by supplementing synthetic data. In situations where 
real-world data is completely absent, creating a large, varied, and 
randomized synthetic dataset can bring the performance of the AI 
models remarkably close to those trained exclusively on real-world 
data. This underscores the significant potential value of synthetic 
data in improving autonomous model training and performance.
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