Contents

Introduction — A public sector perspective | 2

Disruptors

CIO as venture capitalist | 6
Public sector perspective | 17

Cognitive analytics | 22
Public sector perspective | 34

Industrialized crowdsourcing | 38
Public sector perspective | 50

Digital engagement | 56
Public sector perspective | 67

Wearables | 72
Public sector perspective | 83

Enablers

Technical debt reversal | 88
Public sector perspective | 99

Social activation | 104
Public sector perspective | 114

Cloud orchestration | 120
Public sector perspective | 131

In-memory revolution | 136
Public sector perspective | 148

Real-time DevOps | 154
Public sector perspective | 165

Exponentials | 170

Appendix | 183
DISRUPTIVE change can serve as a powerful engine for innovation, inspiration, and efficiency. It can be unsettling for organizations, their leadership, and the people impacted. A transformative philosophy is extending increasingly throughout the public sector, and helping effective and agile organizations embrace disruptive innovation into their operating strategies.

With *Tech Trends 2014: Inspiring Disruption A public sector perspective*, we’ve taken a deep dive into 10 disruptive and (re-) emerging tech trends and how they might impact public sector missions. This is the latest in our annual exploration of business developments in technology. Innovation in IT, crowdsourcing, wearable technologies and the arrival of “exponential” technologies are just some of the cutting-edge advances that can reshape government. If government is to do things differently, these are resources that can help them do it.

During the preparation of this report, we involved some of the leading minds in the business—Deloitte industry and practice leaders, our clients, private sector executives, and industry and academic leaders. We focused on a few specific questions:

- What are the leading business trends and associated technologies?
- How are they evolving?
- How can public sector leaders efficiently harness their transformative energy?
- How should they use the disruptive potential to meet the demands of their organization?

What’s different this year? Traditional boundaries of access and availability to technology are falling, and the cultural and structural barriers that have constrained innovation across the public sector are beginning to loosen. Case in point: industrialized crowdsourcing, digital engagement and social activation are planting seeds, some even taking root in the public sector. Our report provides in-depth analysis of these technology trends—some of them currently applicable, others more futuristic—and forecasts their value in helping public sector organizations serve their mission and its’ operations.

For these innovations to make their mark, innovation can’t be predicated on technology alone. People, processes and technology—the three-legged stool of institutional change—are all equally important. Effective change management, in particular, will be a very important factor in navigating these new and many previously uncharted paths.

It’s a fascinating work in progress…an ongoing discussion. We trust that *Technology Trends 2014: Inspiring Disruption A public sector perspective* will make a meaningful contribution to the conversation.

Brad Eskind
Principal and Federal Technology practice leader
Deloitte Consulting LLP

Mark White
Principal and Federal Office of the CTO
Deloitte Consulting LLP
Welcome to Deloitte’s fifth annual Technology Trends report. Each year, we study the ever-evolving technology landscape, focusing on disruptive trends that are transforming business, government, and society. Once again, we’ve selected 10 topics that have the opportunity to impact organizations across industries, geographies, and sizes over the next 18 to 24 months.

The theme of this year’s report is Inspiring Disruption. In it, we discuss 10 trends that exemplify the unprecedented potential for emerging technologies to reshape how work gets done, how businesses grow, and how markets and industries evolve. These disruptive technologies challenge CIOs to anticipate their potential organizational impacts. And while today’s demands are by no means trivial, the trends we describe offer CIOs the opportunity to shape tomorrow—to inspire others, to create value, and to transform “business as usual.”

The list of trends is developed using an ongoing process of primary and secondary research that involves:

- Feedback from client executives on current and future priorities
- Perspectives from industry and academic luminaries
- Research by alliance partners, industry analysts, and competitor positioning
- Crowdsourced ideas and examples from our global network of practitioners

As in prior years, we’ve organized the trends into two categories. Disruptors are areas that can create sustainable positive disruption in IT capabilities, business operations, and sometimes even business models. Enablers are technologies in which many CIOs have already invested time and effort, but that warrant another look because of new developments, new capabilities, or new potential use cases. Each trend is presented with multiple examples of adoption to show the trend at work. This year, we’ve added a longer-form Lesson from the front lines to each chapter to offer a more detailed look at an early use case. Also, each chapter includes a personal point of view in the My take section.

Information technology continues to be dominated by five forces: analytics, mobile, social, cloud, and cyber. Their continuing impact is highlighted in chapters dedicated to wearables, cloud orchestration, social activation, and cognitive analytics. Cyber is a recurring thread throughout the report: more important than ever, but embedded into thinking about how to be secure, vigilant, and resilient in approaching disruptive technologies.
For the first time, we’ve added a section dedicated to what our contributing authors at Singularity University refer to as “exponential” technologies. We highlight five innovative technologies that may take longer than our standard 24-month time horizon for businesses to harness them—but whose eventual impact may be profound. Examples include artificial intelligence, robotics, and additive manufacturing (3-D printing). The research, experimentation, and invention behind these “exponentials” are the building blocks for many of our technology trends. Our goal is to provide a high-level introduction to each exponential—a snapshot of what it is, where it comes from, and where it’s going.

Each of the 2014 trends is relevant today. Each has significant momentum and potential to make a business impact. And each warrants timely consideration—even if the strategy is to wait and see. But whatever you do, don’t be caught unaware—or unprepared. Use these forces to inspire, to transform. And to disrupt.

We welcome your comments, questions, and feedback. And a sincere “thank you” to the many executives and organizations that have helped provide input for Tech Trends 2014; your time and insights were invaluable. We look forward to your continued innovation, impact, and inspiration.

Bill Briggs
Chief Technology Officer
Deloitte Consulting LLP
wbriggs@deloitte.com
Twitter: @wdbthree
Disruptors
CIOs have historically focused on core delivery and operations with a budget and operating model built around low risk—buying enterprise-class software, building a talent base that could support a well-defined future state, driving for efficiencies in light of constant cost pressures. More and more CIOs, faced with disruptive forces such as crowdsourcing, mobile only, big data, and cybersecurity, are shifting from a world of known problems into one filled with unknowns. To make matters worse, organizational governance has become more complex as barriers for other parts of the business to enter the technical arena have fallen.

CIOs are seeing this divergent behavior—and realizing that their current tools for managing risk and leveraging assets may not work in this new world. Instead, many are beginning to manage their technology portfolios in ways that drive enterprise value, actively monitor the performance of the portfolios, and communicate the portfolios’ positions in language the business can grasp. To do this, CIOs are borrowing from the playbook of today’s leading venture capitalists (VCs). As a result, they are reshaping how they run the business of IT.

Thinking like a VC

Effective VCs are often shrewd businesspeople who operate across a range of intertwined capabilities. They manage portfolios of investments, continually evaluating individual and aggregate performance in terms of value, risk, and reward. They deliberately attract entrepreneurial talent with technical skills and business savvy—as well as vision, passion, and the intangible spark of leadership. And they cultivate agile organizations to anticipate and respond to changing market conditions—open to decisions to exit, take public, reinvest, or divest. These capabilities are closely related to the CIO’s leadership role in today’s growth-oriented organization.

Portfolio investment strategy. CIOs today juggle an ever-growing portfolio of projects, ranging from long-term strategic initiatives to keeping the lights on. CIOs need clear lines of sight across their portfolio of programs and projects—the objectives, dependencies, status, finances, associated resources, and risk profiles. But in-flight initiatives are only one piece of their balance sheet. CIOs should also understand their assets—hardware, software, facilities, delivery model (the way work gets
Valuation. An effective portfolio view enables the CIO to continually evaluate the strategic performance of each asset, project, and vendor in terms that business leaders understand. A CIO with a VC mindset doesn’t just report on the organization’s to-do list or inventory of assets; the CIO communicates the quantitative and qualitative value the IT organization contributes to the business. This means delineating the strategic importance of programs, projects, and assets. What initiatives are mission-critical for the business? What is the confidence level around on-time, on-budget delivery? How deliberately are business case results tracked? Which hardware and software assets are identified for growth? For sunsetting? For active retirement? How “heavy” a balance sheet do you want to carry?

Handicap. In many emerging areas, there are no clearly identifiable winners. How much do you know about the product roadmap of your existing providers? Are you actively scanning small and emergent players? No part of your portfolio should be off-limits—software, hardware, services, talent, data, methods, and tools. Do you have the skills and the discipline to evaluate and predict how the landscape will evolve—not only in the market but, more importantly, for your company, for your customers, and for your business partners? Make sure you are getting what you need in order to provide what the business wants from IT. And be ready to reevaluate in light of market shifts, M&A events, or leadership transitions.

Hedge. What emerging investments are you making, whether in broad technologies or with specific entities? At what stage are you getting involved? How will you incubate, invest, divest? If you build dependencies on start-ups or niche players, you will need to evaluate not only the technology but the founders and their business models. Build a concession architecture that allows you to port assets to different players or to shutter underperforming investments or partnerships in order to move on to the next opportunity.

Promotion. The brand of IT is maligned in some organizations, with the CIO viewed as the operator of the company’s technology assets but not as a strategist or catalyst for innovation.6 Rethinking the role as a VC gives the CIO a backdrop for the business to elevate the understanding—and appreciation—of his or her function. There’s no overnight fix. Understand your current brand permission, then build awareness about IT’s mission, effectiveness, and vision. Internally, this is important in order to enhance IT’s charter. IT should be a board-level topic—recognized as one of the crown jewels of the company. Externally, it’s important to attract talent—and attention. Even some leading VCs have launched PR and marketing efforts.7 Don’t assume that once it’s built, they will come.

Talent brokering. The portfolio mindset extends to talent management as well. Talent scarcity is a universal concern, but it has a particular impact on IT. Consider the skills and capabilities that will be needed to deliver on strategic initiatives, as well as those required to maintain existing systems and processes. Where are the gaps? Which capabilities can be grown from existing staff? Which should be acquired? How can top talent be identified, developed, and hoarded—regardless of title or tenure? How can external talent be tapped? Think beyond consultants, agencies, and contractors. Can you leverage the crowd—either transactionally8 or by finding a way to activate customers and hobbyists? CIOs need doers and thinkers just like VCs, but they also need leaders. Use this age of innovation as a means to launch initiatives to reward (and retain) demonstrated talent with the curiosity and horsepower to help lead growth areas. Demand for talent is outstripping supply in many shops—and expected time to value is shrinking.

Agility. Disruption is a given in technology today, and is extending into many aspects of the business. The balancing act is delicate—driving for more nimble, responsive delivery while maintaining architectural integrity and making solutions built to run.

In this new world, the CIO’s role should expand from enabling operations with technical services to building a technology footprint that fuels, and can be responsive to, the executive team’s growth and investment strategy. Integration, data, and architecture capabilities should be developed into disciplines, serving as the core pillars of business agility.
Growth and change

Cisco’s IT organization uses a three-tiered model to drive its mission: Run the business—focusing on efficiency, quality, and optimization of cost performance; grow the business—helping to drive investments that impact business performance; and change the business—transforming how the organization operates and the markets in which it competes. At Cisco, line-of-business CIOs are encouraged to drive more of their investment portfolio towards growth and change. This doesn’t mean that total cost of ownership isn’t emphasized, but the “better, faster, cheaper” mindset is not just applied to the business of IT—it’s just as important to the business of the business. Technology spend is anchored in running or changing the business—which requires not just bilateral commitment, but ongoing education and teaming between IT and the business.

Line-of-business CIOs look at initiatives as vehicles for tech-enabled business growth and see their roles as orchestrators and shapers. At the financial level, this means actively managing a portfolio of assets with an understanding of cost, return, risk, and strategic importance. More than just inventorying and reporting, it means helping to set priorities, translating the potential of disruptive technologies and making them meaningful, and setting up the organization for speed and agility. Traditional waterfall methodologies have given way to agile—fast, iterative deployments where the business is fully engaged. At the technology level, orchestration is about creating a seamless experience across a technology landscape that is growing more diverse and complex, bringing together a mix of on- and off-premises solutions—and making sure employees, customers, and business partners aren’t exposed to behind-the-scenes complexity. Integration and architecture have been established as key disciplines fueling immediate investments in sales effectiveness, digital marketing across devices/channels, and the technical backbone behind the Internet of Everything.

Cisco has also started to engage more directly with the venture capital and start-up communities. Corporate CIO Rebecca Jacoby has established a company-wide reference architecture covering business, operational, systems, and technology aspects. Emerging solutions that comply with the reference architecture are actively pursued—often in response to specific problems or opportunities the company is trying to address. Like other IT investments, though, an assessment of the solution is made not just on its ability to change the business, but on the ongoing impact on running the business. Like a venture capitalist, the IT organization measures the portfolio in absolute terms—potential value weighed against total cost of service. Cisco emphasizes measurement of vision, strategy, and execution according to the needs of the business. Because of these approaches, Cisco is prepared to deal with whatever the future brings—acquisitions, product innovation, and investments in adjacent services and solutions.
A view from the Valley

Founded in 1989, Hummer Winblad Venture Partners (HWVP) was the first venture capital fund to invest exclusively in software companies. HWVP has deployed over $1 billion of cumulative capital in software investments starting at the first venture round of over 100 enterprise software companies. As such, HWVP has a singular perspective into not just what it takes to effectively manage an investment portfolio, but also into how Fortune 100 companies are responding to this seminal time in the history of technology. Unlike those who see innovation as a crescendo steadily building over time, HWVP sees a different, bumpier reality—defined by periods of disproportionate change, embodied by today’s era of technology disruption.

Historically, large enterprises have encouraged new software vendors to focus on “embracing and extending” in-place software infrastructure. This approach can work if innovation is gradual, but can break down if innovation impacts overall business strategies. We are at a major disruption point where legacy systems likely cannot be extended. The digitization of the customer experience across industries—driven by mobile, social, cloud, and big data—is changing the nature of data itself, as businesses shift their focus from products to customers. Siloed systems aren’t equipped to handle behavioral data, sentiment, and largely unstructured context. Digital requires a different horizontal stack.

The need to keep pace with new business and technological realities could be a great backdrop for CIOs to shift focus from cost, compliance, and maintenance to being in the business of “new.” CIOs should be a strategy anchor for big companies: a board-level position that doesn’t just enable but is a catalyst for growth.

HWVP doesn’t have a “VC handbook” that guides its investments. And neither will CIOs. HWVP co-founder Ann Winblad believes we are entering an era where companies should take risks: They should swim in the river of innovation and be prepared to make multiple bets to discover what innovation really means for their company. It could lead to near-term competitive disadvantage—especially as large organizations react to the exploding population of small vendors that are defining tomorrow. Firms that CIOs may not have heard of with a small operating footprint may become essential partners.

Large companies should not wait for new market leaders to emerge. That means performing your own market analysis and increasing the value of existing partners and alliances—asking them to broker introductions or co-invest in early prototyping. Instead of asking small players to go through qualifying paces, create low-cost, low-risk prototypes and pilots to experiment with their technologies to solve business problems. Many CIOs of large companies use start-ups to enable lines of businesses—and help jointly own the investment in tomorrow.

HWVP is in the business of identifying—and sometimes provoking—patterns. It’s the “venture” part of venture capital. With the customer as the business’s new cerebral cortex and growth moving at the speed of digital, CIOs should act more like VCs. Not every bet will be a winner, but by keeping a portfolio of investments, moving ahead of tested (and sometimes stale) market trends, and keeping a mindset towards engagement, big companies can be poised to compete in these unprecedentedly exciting times.
There are multiple drivers for why CIOs need to think like a venture capitalist. The first is the incredible pace of technological change. CIOs need to place bets—like VCs do—that a given product or service is going to hit the market at the right time and fill a niche that others don’t. It’s often no longer acceptable to use one vendor for all your technology needs. Second, given all the information now accessible to everyone, it’s hard to gain a competitive advantage. VCs try to create a competitive advantage by investing in companies to make a profit—and CIOs try to create a competitive advantage by investing in services and capabilities to reap the benefits before competitors can. And third, to avoid trailing your competitors, CIOs need to take risks. VCs take balanced risks, conducting market research, and being thoughtful about selection and the company’s fit with the team. Taking risks is the hardest part for CIOs; we’ve all seen the damage failed projects can do to the IT department’s reputation. But taking risks means accepting not just the potential, but the inevitability of failure. In my judgment, if you’re too afraid of that, your company will likely always trail your competitors. The key is to work with the rest of the C-suite to recognize that some level of risk is part of the ground rules. And if you’re going to fail, fail fast—cutting your losses and moving on to the next bet.

In addition to my role as CIO of Bloomin’ Brands, I also serve on the CIO advisory board for Sierra Ventures, a venture capital firm. Having that exposure into a VC firm has influenced my behavior as a CIO. When I first joined Bloomin’ Brands, one of my priorities was to focus on where the market was going to be three years out and find something that would allow us to get out in front. At that time, we weren’t yet a cloud organization, but I knew we eventually would be, and invested in a cloud-based integration product. Some in my IT organization were nervous at the time, knowing the integration would be challenging, but we knew it would also be challenging for our competitors—and we were able to be an early adopter and gain the advantage.

I have also adapted my approach to vendor and talent management. The current landscape changes how you deal with vendors. You’re working with both large, established companies and the new set of entrants, many of whom are entrepreneurs who sometimes have never done an enterprise contract before. On the talent side, we increasingly hire for agility. We look for people who can be nimble and move at the same pace as the business. We recruit those who learn based on principle rather than by rote syntax and command so they can more easily move from one product to another.

As much as there are similarities between VCs and today’s CIOs, there are also some tenets of venture capitalism that don’t necessarily make sense for a CIO to adopt. The first is the size of your investment portfolio. While the VC can have 15–25 investments at once, the CIO may be able to balance only a handful. The second is the breadth of the portfolio. The VC can afford to go after multiple spaces, but the CIO’s lens is rightfully constrained by the company’s industry and the needs of the business. There may be some interesting capabilities you need to turn down because they just aren’t the right fit.

To start on the path of CIO-as-venture-capitalist, try to open your mind to becoming more of a risk taker and to look at technology solutions that are less established. Work through your own risk profile—with the rest of your C-suite—and determine how much risk you are willing to take on. Then, align yourself with folks who can help you start to venture into this space and take advantage of some of the early-stage solutions.
Where do you start?

MAstering VC capabilities may challenge many CIOs whose traditional role has been to meet business demands for reliable, cost-efficient technologies. And even if the capabilities could materialize overnight, earning the credibility that is required to become active participants in strategic leadership conversations will likely be a gradual process for many CIOs.

To complicate matters, new technology shifts—especially those powered by analytics, mobile, social, cloud, and cyber—intensify talent shortages and process constraints. These gaps make creating a balanced portfolio across traditional and emerging IT services even more difficult. As business users bypass IT to adopt cloud-based point solutions, organizational technology footprints are becoming more and more complex. Visibility into, and control of, the portfolio becomes harder to attain. CIOs have an imperative to get ahead of the curve.

This is especially true in M&A, where change is constantly disruptive. Many industries are rife with potential investments and divestitures. But few organizations can acquire, sell, or divest with surgical precision without reinventing the wheel with each transaction. Seventy percent of mergers and acquisitions fail to meet their expectations. The value from mergers, acquisitions, and divestitures is more directly linked to getting IT right than anything else.11

Transformation takes time, but small first steps can make a difference:

- **Inventory the technology portfolio.** What technologies does your organization deploy today? Focus on the full range, including solutions procured outside of IT. What projects are in play? What vendors do you depend on? What assets are in use, and where are they located? How does each asset contribute to the business mission, and what is its useful remaining life? It’s not enough to rationalize your assets. Create a model to describe the categories of assets and investments, and use that to guide priorities. Many organizations use Gartner’s Pace-Layered Application Strategy, breaking down their IT landscape into systems of record, systems of differentiation, and systems of innovation. Inventorying and classification is just an enabling step, though. What matters is how you use the visibility to direct focus and capital, balancing across the categories in a way that enables (and amplifies) your business strategy. Budgeting cycles typically run like *Shark Tank*—with funds allocated by the business based on its priorities.

- **Evaluate the portfolio.** Define the risk, value, and strategic importance of each portfolio item. Identify where costs/risks outweigh value. Pinpoint potential trouble spots, such as contracts with unclear service-level agreements or data ownership provisions. Understand each vendor’s viability—not just in terms of capital and capacity, but also how well the vendor’s roadmap aligns with your company’s vision. Look for portfolio clusters: Is the proportion of investments in maintenance and upkeep appropriate when compared with investments in new strategic opportunities? Are there gaps that could hold the organization back? Strive for balance between extending legacy systems and investments in innovation. Aim for transparency, letting your business counterparts appreciate the exhaustive demand curve as well as the thinking that defines priorities.
• **Double down on winners.** And fold the losers. VCs expect some assets to underperform, and they are willing to cut their losses. CIOs should encourage intelligent risk-taking within the organization. Failure due to poor execution is unacceptable, but setbacks resulting from exploring innovative ideas are inevitable for organizations that want to compete in a high-growth environment. Borrow from the VC playbook—intentionally being conservative in initial funding to inspire creativity and creating more natural checkpoints. In either case, be prepared to recommend that the organization pull the plug when a project isn’t delivering.

• **Direct line of sight to revenue.** Come up with an approach to vet technologies and their companies to better identify and evaluate winners and losers. Share your accomplishments and goals in terms that the business understands. Openly discuss the state of the projects and assets in which the business has invested. While few CIOs today have the sole power to initiate or withdraw substantial investments, many should develop the ability to evaluate the portfolio objectively. The first few wins can become the centerpiece of your campaign for change.
Bottom line

At first blush, comparisons between CIOs and venture capitalists may seem like a stretch. For example, CIOs can’t shoot from the hip on risky investments. They provide critical services that the business simply can’t do without, where the risk of getting it wrong could be catastrophic. At the same time, there’s a lot to learn from the portfolio mindset that VCs bring to their work: balancing investments in legacy systems, innovation, and even bleeding-edge technologies; understanding—and communicating—business value; and aligning talent with the business mission. Venture capitalists operate in a high-stakes environment where extraordinary value creation and inevitable losses can coexist inside a portfolio of calculated investments. So do CIOs.

Authors

Tom Galizia, principal, Deloitte Consulting LLP

Tom Galizia is the national leader of Deloitte Consulting LLP’s Technology Strategy and Architecture practice that focuses on enabling new IT capabilities to successfully navigate changing market dynamics, delivering IT-enabled business strategy and transformation, and driving efficient IT operations.

Chris Garibaldi, principal, Deloitte Consulting LLP

Chris Garibaldi is a principal in Deloitte Consulting LLP’s Technology Strategy and Architecture practice and leads the Project Portfolio Management practice. With 20 years of experience in business strategy, Chris possesses a unique perspective on the evolution of business and IT management.
Endnotes

CIO as venture capitalist

A public sector perspective

There is an opportunity for public sector CIOs to begin acting like venture capitalists (VCs). Adopting a more VC-like mindset will help them balance necessary investments in operations and maintenance (O&M) with new investments in innovation that can increase efficiency, provide new capabilities, and help to improve performance in areas clearly aligned with agencies’ missions. Using a risk-intelligent approach, the CIO as VC can build support for, as well as influence, and manage portfolio investments and operations management. Some CIOs welcome the change and are building teams and coalitions to support more VC-like practices, while other CIOs think the barriers are too great to adopt a more strategic and innovative role.

Stakeholder support, budget and strategic planning alignment, and talent acquisition are common challenges across industries. A CIO acting like a VC is a new concept for many, and perhaps it is beyond the reach for some; however, a few common business disciplines aligned with a VC mindset may just be what is needed to make the shift. The goal: to elevate the business capability and focus information technology (IT) to meet the mission demands for a faster, more agile pace, shorter cycle times, new delivery models from IT. IT now has to support a more technology-savvy customer base. Such is the new reality of the CIO organization, and the potential to adopt VC-like traits.

What is different for the public sector

Public sector CIOs have always managed a portfolio of IT operations. This is built into their jobs; however, for the most part, CIOs inherit their portfolios (rather than building them from the ground up). Taking a more strategic, risk-oriented view may not be mandatory, but doing so offers an opportunity to elevate the role of IT. Taking a strategic, risk-centric view can be more than just a three-year justification and compliance cycle. It can mean looking at the portfolio and assessing which projects will truly have an effect on—and support—the growing demands of the mission. It is truly an opportunity for CIOs to inherit, cultivate, and (re)evaluate IT operations to engage the mission owners with a VC mindset.

The public sector does offer some distinctive barriers. The sheer scale of government operations, rigid compliance mandates, and a long portfolio budgeting/funding cycle make it difficult for CIOs to be nimble and respond rapidly to new IT mission challenges. A complex and cumbersome procurement process has previously contributed to solutions that are suboptimal, out of date, and that introduce future (or

An invitation to be bolder

Announcing the Administration’s IT priorities for 2014, Federal CIO Steven VanRoekel exhorted IT leaders to “look beyond the tactical elements of IT projects and embrace a more strategic and modular approach,” and urged them to become more “customer centric.”

With an eye towards the future, VanRoekel added, “I want the CIO at FAA to wake up and go to bed thinking about flight safety and not wondering about email or where am I with commodity contracts.”
hidden) costs. Further, the limited tenure of many public sector CIOs—often shorter than the typical budget cycle for new programs—makes it difficult for them to accumulate the experience or the authority (express or implicit) to truly act strategically.

Perhaps the most daunting challenge for a public sector CIO who might wish to operate like a VC involves the assumption of risk while maintaining compliance and acceptable governance, where the tolerance level for risk in government is very low. This is partially due to public scrutiny over the use of tax payers’ money and the implied obligation to be good stewards of tax dollars, as well as the concern over “gambling” with public funds even when the rewards are potentially greater than the risk. CIOs need to promote the benefits of innovation and their ability to execute; however, the risk to political capital—not only for the CIO but also for stakeholders—may be high. Conversely, the incentive to take risks in this manner may be viewed as a negative, because innovation and improved efficiency can lead to the CIO ending up with less budget in the following budget cycle—thus doubling the pressure. Future legislative changes, on the horizon, could help to fully remove this barrier along with creating corresponding incentives to balance the system.

Other challenges in the public sector involve not the position itself, but rather people, skills, and culture. Areas that CIOs need to address and involve concurrently include: general human resource (HR) processes, leadership and staff skillsets, rebranding, and a new organizational structure. Unlike many enterprise CIOs, public sector CIOs are not able to quickly refresh skillsets, pay and incentive structures, or recruitment and retention methods due to public sector employee regulations, unions, and politics. However, some public sector organizations—state agencies in particular—have taken a page from commercial industry and created the chief innovation officer or chief digital officer role, decoupling it from the core IT functions. These roles are viewed as providing dependable, cost-efficient services to meet the mission need rather than exploring “the bleeding edge.”

Lessons from the front lines

- **Expand your risk savvy.** Every endeavor involves a certain amount of risk, and any effort to drive the risk to zero is an exercise in futility. The CIO’s ability to assume a certain amount of risk in order to pursue an innovative venture partly depends on his or her reputation, willingness, and effectiveness in a leadership role. In order to act as a leader, it is necessary to have a vision of what is possible and then make the right choices to get there. CIOs should acknowledge that risk can never be eliminated completely, but it can be managed. This entails taking a risk intelligent approach—making a realistic assessment of each risk’s probability and preparing contingency plans to respond to problems when they occur. Assessing and adopting traits of a VC can help deliver new results and reduce or eliminate surprise around failing or ineffective projects.

- **Recruit strategically.** No CIO, no matter how skilled or foresighted, can do the job alone. Beyond building consensus and support among other executives, the CIO’s leadership effectiveness is impacted by his or her ability to build a skilled team that can manage operations and deliver innovation. This involves bringing in talent with new capabilities and new ideas, as well as making strategic placements at all levels with the skills needed to deliver innovative projects. An effective personnel strategy includes keeping an eye out for “up and comers” within an agency who are interested in learning new skills and taking on new challenges. Personnel and skills should be seen as a portfolio to be managed strategically—and just as critical as the IT projects they will serve.
A case of “think big, start small, fail fast, scale soon” in public sector

Michigan’s innovative approaches in government start at the top with Governor Rick Snyder’s (a former VC himself) assertion that Michigan be run like a business—a leading business. The appointment of Mr. David Behen as CIO was to fill the crucial role in leading the development of the IT resources to meet the demands of a growing enterprise. To transform the approach, and leverage the perspectives of a VC, the team has taken a project portfolio management approach, establishing a business unit structure and assigning executive leads to own each department’s portfolio. Recognizing the critical role IT plays in the delivery of services to its stakeholders, Michigan changed the way it invests in technology, going to the state legislature to obtain $47M in appropriated funding for IT investments.

Like VCs, Michigan is strategically placing its bets, awarding the IT funds to state and local projects that demonstrate strong ROI potential and a commitment to customer service. In addition to IT investments, Mr. Behen and his team—through initiatives, such as the Economic Vitality Incentive Program and an “evergreen” fund—are also focused on awarding grants and low-interest loans to local governments to use as seed money for high-growth, high-potential ideas. For example, Eastern Upper Peninsula Intermediate School District received an investment from the Information, Communications and Technology Innovation Fund to cover software license costs, training fees, and tech support to establish an integrated suite of systems. The design of the project is transferable to other Michigan Intermediate School Districts.

Despite its success (of Michigan’s 733 projects, 92% are in the green), Michigan has faced some challenges. “We’ve been slow to ramp up our evergreen fund (a loan program) due to some legal barriers. When we started, we had no idea that we could give out the money but couldn’t get it back. So we had to go to the legislature and change some laws,” Mr. Behen said.

Michigan has mitigated this and other barriers through agility and a risk-return portfolio strategy. Mr. Behen and Deputy Director of Shared Services, Mr. Eric Swanson mentioned, “We implement fast and then adjust. … We are constantly adjusting.” Andris Ozols, IT strategy lead, also credits success and overcoming challenges to the significant degree of trust and relationship among Mr. Behen’s department, the governor, and other stakeholders.

The Michigan team is poised to take on riskier investments and projects in the future, including some that involve disruptive technologies like social and mobile. Reflecting on the topic, Mr. Behen said, “I initially never would have put ‘CIO’ and ‘venture capitalist’ in the same sentence.” Mr. Swanson chimed in, commenting on their team’s approach: “It is a new way of doing business, and it’s positioning us to pull off amazing things. Now that we are having this conversation out loud, we recognize this is pretty incredible.”
• **Have the conversation out loud.** Start with clear stakeholder buy-in. The top executive and the (legislative) board of directors need to be onboard as CIOs leverage new business models, employ new spending mechanisms, and take an entrepreneurial approach to running IT like a business. The CIO is developing not only a vision and a business plan but also an executive team, an ROI model and, equally important, a brand. With all of the moving parts, as well as the scrutiny and oversight on risk, this is a team sport. And as the head coach, the CIO needs to share the new strategy out loud. Beyond transparency, open lines of communication and garnering support early and often enable the CIO’s biggest fans, supporters, and even detractors to participate, and for the strategy to play out.

Getting started

• **Start small; grow gradually.** When risk is involved, it is a good idea to start small—not only in transforming your team, but in taking on “riskier” projects. Small projects can be more regularly evaluated and adjusted while success (or failure) is evaluated. Failing projects can be adjusted, and lessons learned can be identified and incorporated into future efforts. Successful ventures can be evaluated by criterion used by VCs including effect, return on investment (ROI), or other value criterion, with leading practices applied to subsequent projects—thus enhancing the brand and validating the strategy the CIO is driving.

In the current economic climate, the odds for a successful outcome favor projects that can either demonstrate measurable cost savings or that have a positive effect on an agency’s mission. Breaking larger endeavors into modules that can be built and tested quickly can keep projects from getting out of control. In fact, Federal CIO Mr. VanRoekel, has specifically called on agencies to “use modular development to reduce risk.”

• **Build excitement for innovative work.** Leverage federal, state, and national associations/programs to highlight and recognize innovative IT efforts. Often how something was delivered is equally, if not more, important than what was delivered. Sharing leading practices, fostering innovation with and for the mission folks closest to the need, and communicating impact can drive momentum. CIOs should consider sponsoring an innovation challenge to capture quick-wins, then market the win to create excitement, pride, and future support and participation on a larger scale. The overall goals are greater mission and CIO collaboration as well as a broader executive risk-intelligent portfolio-based strategy with funding support.

• **Nurture key relationships.** Like a VC, a CIO needs to develop support at key levels to quickly align productive assets—as well as shed underperforming assets—in order to achieve the desired ROI. Perhaps the most useful step that a CIO can take toward developing a strategic outlook is to adopt a “client perspective” by developing closer relationships with the business partners responsible for achieving the agency’s mission objectives.

According to a National Association of State Chief Information Officers (NASCIO) survey of state-level CIOs, having good relationships with state governors and budget chiefs was the most important success factor in doing their jobs. Nurturing these relationships can provide the executive alignment needed to secure any necessary funding, develop emerging employee models and skill sets, and get agreement on any procurement exceptions. These relationships provide an opportunity for CIOs to decide which projects will have the greatest impact on the mission.
CIO as venture capitalist

Bottom line

Public sector CIOs can indeed approach their role like a VC. Getting there, however, requires new thinking, expanded skills, and top-level support. Having a VC mind-set means deciding which projects to fund, as well as which are not in the budget or simply lack an appropriate ROI. Today, many public sector CIOs lack that authority and budgetary control, but a few pioneers are leading the way. Funding innovation with acceptable risk is never easy and, ironically, never without risk. CIOs, like VCs, need to focus on leadership to help recognize the most appropriate ventures for investment. As the demands on IT change and agency mandates evolve, so should a CIO’s thinking. With this new perspective, CIOs can add value to their roles and elevate their status, becoming strategic partners to the mission.

Authors

Kristen Miller, principal, Deloitte Consulting LLP

Kristen Miller is a former state CIO and the technology leader for the Deloitte Consulting LLP Public Sector practice. She has 17 years of experience in state government IT consulting, management and operations with a focus on IT strategic planning, systems development, cyber security, shared services, and business intelligence that she leverages to position Deloitte with CIOs around the country.

Van Hitch, specialist leader, Deloitte Consulting LLP

Van Hitch serves as a strategic advisor to Deloitte’s Federal clients and Federal CIOs, helping them to identify long term technology and transformation opportunities. Prior to joining Deloitte, he spent over nine years as a Federal agency CIO, pushing the use of innovative procurement approaches, while initiating major department-wide IT solutions.

Endnotes

For decades, companies have dealt with information in a familiar way—deliberately exploring known data sets to gain insights. Whether by queries, reports, or advanced analytical models, explicit rules have been applied to universes of data to answer questions and guide decision making. The underlying technologies for storage, visualization, statistical modeling, and business intelligence have continued to evolve, and we’re far from reaching the limits of these traditional techniques.

Today, analytical systems that enable better data-driven decisions are at a crossroads with respect to where the work gets done. While they leverage technology for data-handling and number-crunching, the hard work of forming and testing hypotheses, tuning models, and tweaking data structures is still reliant on people. Much of the grunt work is carried out by computers, while much of the thinking is dependent on specific human beings with specific skills and experience that are hard to replace and hard to scale.

A new approach to information discovery and decision making

For the first time in computing history, it’s possible for machines to learn from experience and penetrate the complexity of data to identify associations. The field is called cognitive analytics™—inspired by how the human brain processes information, draws conclusions, and codifies instincts and experience into learning. Instead of depending on predefined rules and structured queries to uncover answers, cognitive analytics relies on technology systems to generate hypotheses, drawing from a wide variety of potentially relevant information and connections. Possible answers are expressed as recommendations, along with the system’s self-assessed ranking of how confident it is in the accuracy of the response. Unlike in traditional analysis, the more data fed to a machine learning system, the more it can learn, resulting in higher-quality insights.

Cognitive analytics can push past the limitations of human cognition, allowing us to process and understand big data in real time, undaunted by exploding volumes of data or wild fluctuations in form, structure, and quality. Context-based hypotheses can be formed by exploring massive numbers of permutations of potential relationships of influence and causality—leading to conclusions unconstrained by organizational biases. In academia, the techniques have been applied to the study of reading, learning, and language.

Artificial intelligence, machine learning, and natural language processing have moved from experimental concepts to potential business disruptors—harnessing Internet speed, cloud scale, and adaptive mastery of business processes to drive insights that aid real-time decision making. For organizations that want to improve their ability to sense and respond, cognitive analytics can be a powerful way to bridge the gap between the intent of big data and the reality of practical decision making.
development. The Boltzmann machine\(^1\) and the Never-Ending Language Learning (NELL)\(^2\) projects are popular examples. In the consumer world, pieces of cognitive analytics form the core of artificial personal assistants such as Apple's Siri\(^3\) voice recognition software\(^3\) and the Google Now service, as well as the backbone for the Xbox\(^4\) video game system's verbal command interface in Kinect\(^5\).

Even more interesting use cases exist in the commercial realm. Early instances of cognitive analytics can be found in health care, where systems are being used to improve the quality of patient outcomes.

A wide range of structured inputs, such as claims records, patient files, and outbreak statistics, are coupled with unstructured inputs such as medical journals and textbooks, clinician notes, and social media feeds. Patient diagnoses can incorporate new medical evidence and individual patient histories, removing economic and geographic constraints that can prevent access to leading medical knowledge.

Highlights in the history of cognitive analytics

1950

Alan Turing publishes Computing Machinery and Intelligence, in which he proposes what is now referred to as the Turing Test: an experiment that tests a machine’s ability to exhibit intelligent human behavior.\(^1\)

1968

The first commercial database management system, or Information Management System (IMS), tracks huge amounts of structured data such as bills of materials for NASA's Apollo Moon mission.\(^2\)

1972

Work begins on MYCIN, an early expert system that identifies infectious blood diseases using an inference engine and suggests diagnoses and treatments. Despite high performance, it is not used in practice.\(^3\)

1980s

Steady increases in computing power fuel a revolution in natural language processing as early algorithms such as decision trees and neural network models are introduced.\(^4\)

COMPUTATIONS PER KILOWATT-HOUR

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>1e+12</td>
</tr>
<tr>
<td>1960</td>
<td>1e+8</td>
</tr>
<tr>
<td>1970</td>
<td>1e+4</td>
</tr>
<tr>
<td>1980</td>
<td></td>
</tr>
</tbody>
</table>

In financial services, cognitive analytics is being used to advise and execute trading, as well as for advanced fraud detection and risk underwriting. In retail, cognitive systems operate as customer service agents, in-store kiosks, and digital store clerks—providing answers to customers’ questions about products, trends, recommendations, and support. Another promising area for cognitive analytics involves the concept of “tuning” complex global systems such as supply chains and cloud networks.

Getting practical

In practical terms, cognitive analytics is an extension of cognitive computing, which is made up of three main components: machine learning, natural language processing, and advancements in the enabling infrastructure.

Machine learning, or deep learning, is an artificial intelligence technique modeled after characteristics of the human brain. A machine learning system explores many divergent concepts for possible connections, expresses potential new ideas with relative confidence.
or certainty in their “correctness,” and adjusts the strength of heuristics, intuition, or decision frameworks based on direct feedback to those ideas. Many of today’s implementations represent supervised learning, where the machine needs to be trained or taught by humans. User feedback is given on the quality of the conclusions, which the system uses to tune its “thought process” and refine future hypotheses.

Another important component of cognitive computing is natural language processing (NLP), or the ability to parse and understand unstructured data and conversational requests. NLP allows more data from more sources to be included in an analysis—allowing raw text, handwritten content, email, blog posts, mobile and sensor data, voice transcriptions, and more to be included as part of the learning. This is essential, especially because the volume of unstructured data is growing by 62 percent each year and is expected to reach nine times the volume of structured data by 2020. Instead of demanding that all information be scrubbed, interpreted, and translated into a common format, the hypothesis and confidence engines actively learn associations and the relative merits of various sources.

NLP can also simplify a person’s ability to interact with cognitive systems. Instead of forcing end users to learn querying or programming languages, cognitive computing allows spoken, natural exploration. Users can ask, “What are the sales projections for this quarter?” instead of writing complicated lookups and joins against databases and schemas.

Finally, cognitive computing depends on increased processing power and storage networks delivered at low costs. That’s because it requires massively parallel processing, which allows exploration of different sets of data from different sources at the same time. It also requires places where the massive amounts of data can be continuously collected and analyzed. Options include the cloud, large appliances and high-end servers, and distributed architectures that allow work to be reduced and mapped to a large collection of lower-end hardware.

All together now

Cognitive analytics is the application of these technologies to enhance human decisions. It takes advantage of cognitive computing’s vast data-processing power and adds channels for data collection (such as sensing applications) and environmental context to provide practical business insights. If cognitive computing has changed the way in which information is processed, cognitive analytics is changing the way information is applied.

The breakthrough could not have come at a better time. As more human activity is being expressed digitally, data forms continue to evolve. Highly structured financial and transactional data remain at the forefront of many business applications, but the rise of unstructured information in voice, images, social channels, and video has created new opportunities for businesses to understand the world around them. For companies that want to use this information for real-time decision making, cognitive analytics is moving to center stage. It is both a complement to inventorying, cleansing, and curating ever-growing decision sources and a means for machine learning at Internet speed and cloud scale to automatically discover new correlations and patterns.

Cognitive analytics is still in its early stages, and it is by no means a replacement for traditional information and analytics programs. However, industries wrestling with massive amounts of unstructured data or struggling to meet growing demand for real-time visibility should consider taking a look.
Coloring outside the lines

A multinational consumer goods company wanted to evaluate new designs for its popular men’s personal care product. The company had sizeable market share, but its competitors were consistently developing and marketing new design features. To remain competitive, the company wanted to understand which features consumers valued.

Thousands of testers filled out surveys regarding the company’s new product variant. Although some of the survey’s results were quantitative (“Rate this feature on a scale from 1–5”), many were qualitative free-form text (“Other comments”). This produced more text than could be processed, efficiently and accurately, by humans.

The company used Luminoso’s text analytics software to analyze the responses by building a conceptual matrix of the respondents’ text—mapping the raw content onto subject and topic matters, statistical relationships, and contexts that were relevant to the business. Luminoso’s Insight Engine identified notable elements and patterns within the text, and measured the emotional and perceived effects of the product’s design and functionality.

The discoveries were impressive, and surprising. The company rapidly identified design features important to consumers, which mapped closely to the numerical ratings testers had assigned. Unexpectedly, the product’s color strongly affected how emotionally attached a tester was to his product. When writing freely, testers frequently mentioned color’s significance to the product experience—but when faced with specific questions, testers only spoke to the topic at hand. The company also uncovered that the color findings were mirrored in those testers who did not specifically mention color.

The company, able to finally quantify a color preference, conducted a study to select the preferred one. The product is now on the shelves of major supermarkets and convenience stores—in a new color, selling more units.

Intelligent personal assistants

Some of the building blocks of cognitive analytics have found homes in our pockets and purses. Intelligent personal assistants such as Apple’s Siri, Google Now, and Microsoft Cortana use natural language processing, predictive analytics, machine learning, and big data to provide personalized, seemingly prescient service. These are examples of complex technologies working together behind a deceptively simple interface—allowing users to quickly and easily find the information they need through conversational commands and contextual prompts based on location, activity, and a user’s history.

Such programs are first steps toward harnessing cognitive analytics for personal enhanced decision making. For example, Google Now can check your calendar to determine that you have a dentist appointment, or search your communication history to know that you are seeing a movie—contextually determining your destination. It can then use GPS to determine your current location, use Google Maps to check traffic conditions and determine the best driving route, and set a notification to let you know what time you should leave. And these systems are only getting better, because the programs can also learn your behaviors and preferences over time, leading to more accurate and targeted information.
Changing the world of health care

In 2011, WellPoint, one of the nation’s largest health benefits companies, set out to design a world-class, integrated health care ecosystem that would link data on physical, financial, worksite, behavioral, and community health. By establishing a singular platform, WellPoint could enhance its ability to collaborate, share information, automate processes, and manage analytics. To do this, WellPoint needed an advanced solution, and therefore teamed with IBM to use the capabilities of Watson—IBM’s cognitive computing system.

“We decided to integrate our health care ecosystem to help our care management associates administer member benefits, while providing a seamless member experience and working to reduce costs,” said Gail Borgatti Croall, SVP of Care Management at WellPoint. “Cognitive analytics was important in creating a system that could drive effectiveness and efficiencies throughout our business.”

Today, WellPoint uses cognitive analytics as a tool for utilization management: specifically, in reviewing pre-authorization treatment requests—decisions that require knowledge of medical science, patient history, and the prescribing doctor’s rationale, among other factors. With its ability to read free-form textual information, Watson can synthesize huge amounts of data and create hypotheses on how to respond to case requests. In fact, WellPoint already has “taught” its cognitive engine to recognize medical policies and guidelines representing 54 percent of outpatient requests.

“It took us about a year to train our solution on our business, and the more we taught the faster the Watson cognitive platform learned,” said Croall. “Now it’s familiar with a huge volume of clinical information and professional literature. This reduces a significant amount of time needed for nurses to track down and assess the variables when making a well-informed decision on an authorization request.”

For each case reviewed, the system provides nurses with a recommendation and an overall confidence and accuracy rating for that recommendation. In some outpatient cases, the system already can auto-approve requests, reducing the timeframe for patient treatment recommendations from 72 hours to near-real time. As the cognitive system develops its knowledge database, the accuracy and confidence ratings will continue to rise, and the ability to approve greater numbers and types of cases in real time becomes a reality.

Furthermore, nurses have experienced a 20 percent improvement in efficiency in specific work flows due to the one-stop-shop nature of the integrated platform. The integrated platform will create not only efficiency savings but also enable improvement in speed of response to provider requests.

WellPoint’s use of cognitive analytics for utilization management represents the tip of the iceberg. Its integrated health care ecosystem is a multiyear journey that the company approaches with iterative, small releases, keeping the effort on time and on budget. In the future, WellPoint may look into how the system can support identification and stratification for clinical programs or many other applications.

“We’d like to see how our system can support a more holistic, longitudinal patient record—for example, integrating electronic medical record (EMR) data with claims, lab, and pharmacy data,” said Croall. “We also see opportunities on the consumer side. Imagine using cognitive insights to create an online, interactive model that helps you, as a patient, understand treatment options and costs. We’ve barely scratched the surface with our cognitive analytics capabilities. It truly will change the way we perform utilization management and case management services.”
Safeguarding the future—
Energy well spent

Each year, thousands of safety-related events occur around the world at nuclear power plants. The most severe events make headlines because of disastrous consequences including loss of life, environmental damage, and economic cost. Curtiss-Wright, a product manufacturer and service provider to the aerospace, defense, oil and gas, and nuclear energy industries, examines nuclear safety event data to determine patterns. These patterns can be used by energy clients to determine what occurred during a power plant event, understand the plant’s current status, and anticipate future events.

Curtiss-Wright is taking its analysis a step further by developing an advanced analytics solution. The foundation of this solution is Saffron Technology’s cognitive computing platform, a predictive intelligence system that can recognize connections within disparate data sets. By feeding this platform with structured operational metrics and decades of semi-structured nuclear event reporting, the ability to foresee future issues and provide response recommendations for evolving situations is made possible. Ultimately, Curtiss-Wright hopes to improve nuclear safety by means of a solution that not only enables energy companies to learn from the past but also gives them the opportunity to prepare for the future.
In 2011, I was given the opportunity to lead IBM’s Watson project and build a business around it. I am passionate about the process of “presentations to products to profits,” so this endeavor really excited me. The first decision I had to make was which markets and industries we should enter. We wanted to focus on information-intensive industries where multi-structured data are important to driving better decisions. Obvious choices such as insurance, health care, telecom, and banking were discussed. We chose to first focus on health care: a multitrillion-dollar industry in which our technology could help improve the quality of care delivered, drive toward significant cost reduction, and have a positive impact on society. In 2012, we reduced the footprint of our Watson system—then the size of a master bedroom—to a single server and took our first customer into production.

To be successful with cognitive computing, companies should be able to articulate how they will make better decisions and drive better outcomes. Companies will struggle if they approach it from the “technology in” angle instead of “business out.” The technology is no doubt fundamental but should be coupled with business domain knowledge—understanding the industry, learning the theoretical and practical experience of the field, and learning the nuances around a given problem set.

For example, in the health care industry, there are three primary aspects that make Watson’s solution scalable and repeatable. First, Watson is being trained by medical professionals to understand the context of the relevant health area and can present information in a way that is useful to clinicians. Second, when building the tools and platform, we created a model that can be reconfigured to apply to multiple functions within the industry so that learnings from one area can help accelerate mastery in related fields. Third, the delivery structure is scalable—able to tackle problems big or small. The more it learns about the industry, the better its confidence in responding to user questions or system queries and the quicker it can be deployed against new problems. With Watson for contact center, we are targeting training the system for a new task in six weeks with a goal of achieving business “break even” in six months.

However, cognitive computing may not always be the right solution. Sometimes businesses should start with improving and enhancing their existing analytics solutions. Companies considering cognitive computing should select appropriate use cases that will generate value and have enough of a compelling roadmap and potential to “starburst” into enough additional scenarios to truly move the needle.

In terms of the talent needed to support cognitive solutions, I liken this to the early stages of the Internet and web page development when people worried about the lack of HTML developers. Ultimately, systems arose to streamline the process and reduce the skill set required. With Watson, we have reduced the complexity required to do this type of work by 10–15 times where we were when we first started, and recent startups will continue to drive the curve down. So less highly specialized people will be able to complete more complex tasks—PhDs and data scientists won’t be the only ones capable of implementing cognitive computing.

There are three things I consider important for an effective cognitive computing solution: C-suite buy-in to the vision of transforming the business over a 3–5 year journey; relevant use cases and roadmap that are likely to lead to a compelling business outcome; and the content and talent to drive the use case and vision. If you approach a project purely from a technology standpoint, the project will become a science project, and you can’t expect it to drive value.
Where do you start?

RATHER than having a team of data scientists creating algorithms to understand a particular business issue, cognitive analytics seeks to extract content, embed it into semantic models, discover hypotheses and interpret evidence, provide potential insights—and then continuously improve them. The data scientist’s job is to empower the cognitive tool, providing guidance, coaching, feedback, and new inputs along the way. As a tool moves closer to being able to replicate the human thought process, answers come more promptly and with greater consistency. Here are a few ways to get started:

- **Start small.** It’s possible to pilot and prototype a cognitive analytics platform at low cost and low risk of abandonment using the cloud and open-source tools. A few early successes and valuable insights can make the learning phase also a launch phase.

- **Plant seeds.** Analytics talent shortages are exacerbated in the cognitive world. The good news? Because the techniques are so new, your competitors are likely facing similar hurdles. Now is a good time to invest in your next-generation data scientists, anchored in refining and harnessing cognitive techniques. And remember, business domain experience is as critical as data science. Cast a wide net, and invest in developing the players from each of the disciplines. Consider crowdsourcing talent options for initial forays.¹⁴

- **Tools second.** The tools are improving and evolving at a rapid pace, so don’t agonize over choices, and don’t overcommit to a single vendor. Start with what you have, supplement with open-source tools during the early days, and continue to explore the state of the possible as tools evolve and consolidate.

- **Context is king.** Quick answers and consistency depend on more than processing power. They also depend on context. By starting with deep information for a particular sector, a cognitive analytics platform can short-circuit the learning curve and get to high-confidence hypotheses quickly. That’s why the machinery of cognitive computing—such as Watson from IBM—is rolling out sector by sector. Early applications involve health care management and customer service in banking and insurance. Decide which domains to target and begin working through a concept map—part entity and explicit relationship exercise, part understanding of influence and subtle interactions.

- **Don’t scuttle your analytics ship.** Far from making traditional approaches obsolete, cognitive analytics simply provides another layer—a potentially more powerful layer—for understanding complexity and driving real-time decisions. By tapping into broader sets of unstructured data such as social monitoring, deep demographics, and economic indicators, cognitive analytics can supplement traditional analytics with ever-increasing accuracy and speed.

- **Divide and conquer.** Cognitive analytics initiatives can be broken into smaller, more accessible projects. Natural language processing can be an extension of visualization and other human-computer interaction efforts. Unstructured data can be tapped as a new signal in traditional analytics efforts. Distributed computing and cloud options for parallel processing of big data don’t require machine learning to yield new insights.
• **Know which questions you’re asking.** Even modest initiatives need to be grounded in a business “so what.” An analytics journey should begin with questions, and the application of cognitive analytics is no exception. The difference, however, lies in the kinds of answers you’re looking for. When you need forward-looking insights that enable confident responses, cognitive analytics may be your best bet.

• **Explore ideas from others.** Look outside your company and industry at what others are doing to explore the state of the possible. Interpret it in your own business context to identify the state of the practical and valuable.

Bottom line

As the demand for real-time support in business decision making intensifies, cognitive analytics will likely move to the forefront in high-stakes sectors and functions: health care, financial services, supply chain, customer relationship management, telecommunications, and cyber security. In some of these areas, lagging response times can be a matter of life and death. In others, they simply represent missed opportunities.

Cognitive analytics can help address some key challenges. It can improve prediction accuracy, provide augmentation and scale to human cognition, and allow tasks to be performed more efficiently (and automatically) via context-based suggestions. For organizations that want to improve their ability to sense and respond, cognitive analytics offers a powerful way to bridge the gap between the promise of big data and the reality of practical decision making.

Authors

Rajeev Ronanki, principal, Deloitte Consulting LLP

Rajeev Ronanki is a leader in the areas of IT strategy, enterprise architecture, cognitive architectures, cloud, mobile, and analytics. He has a deep knowledge of US health insurance business processes, operations, and technology, and has worked extensively with transactional and analytic systems.

David Steier, director, Deloitte Consulting LLP

David Steier is a director in Deloitte Consulting LLP’s US Human Capital Practice in Actuarial, Risk and Advanced Analytics. He leads the Deloitte Analytics Solutions group, whose goal is to build tools that accelerate the sale and delivery of business analytics engagements.
Endnotes

3. Tech Trends 2014 is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple Inc.

9. Utilization management is the case-by-case assessment of the appropriateness of medical services against evidence-based quality guidelines.

Cognitive analytics
A public sector perspective

The public sector has played a key role in the development of much of the basic science and technology that has made fundamental advances in computing capability possible. The earlier “Highlights in the History of cognitive analytics” timeline graphic, depicted in this year’s Tech Trends, illustrates that government initiatives have made major contributions to the field for many decades. They began in the late 1960s with the first commercial database management system that was built to support The National Aeronautics and Space Administration’s (NASA) Apollo moon mission. Recently, the Obama Administration’s Big Data initiative has given additional support for research and application development, including cognitive analytics.

Many organizations are constrained by the human capacity to do analysis, look into hypotheses, and come up with new scenarios to investigate. They are looking for new ways to bridge the gap between the promise of big data and the realities of practical decision making. For some, the number of possibilities is so significant that a new approach is needed, particularly around activities such as fraud detection, market surveillance, and competitive or safety threat detection. The data exist and people understand the techniques for each of these scenarios, but there is simply insufficient capacity to build hypotheses and perform the requisite analysis. Enter cognitive analytics—the realm of machine learning and natural language processing, automated insights, and probable answers.

As the exponential growth of data continues, demand for real-time support in business decision making intensifies. Cognitive analytics can take on the mundane tasks that humans do not like to do or that seem less impactful, but nonetheless still need to be done. Take intelligent filtering, for example: Now a machine can evaluate and develop a hypothesis, and presort the data. Cognitive analytics may help analysts get to the short set of potential answers more quickly, and then do what humans do—apply intuition, and filter out what is not right to solve a problem. In addition, cognitive analytics can help uncover questions based on hidden data patterns that have not been asked before.

What is different for the public sector

In a time of great competition for mindshare, talent, and funding, little is left to the public sector CIO for research and innovation (particularly when considering the public sector’s long budget cycles). However, for mission groups, finding new ways to improve efficiency and efficacy is paramount. Public sector CIOs, CTOs, and technologists are interested in cognitive analytics—and for good reason. Federal agencies are reported to have spent some $5 billion on big data projects in 2012, an amount that is forecasted to grow to $6 billion this year and to $8 billion by 2017. The volume and growth of spending clearly indicate that the government is already in the big data business in a big way, and that it has good reasons to be actively exploring emerging solutions—including cognitive analytics—to more efficiently and effectively respond to this demand. The country’s intelligence agencies are obvious candidates to make use of these advanced capabilities, even if the application of these tools is not openly disclosed. The nation’s military—which must keep up with the wealth of information it captures in order to stay one step ahead of our enemies—may become a major user of cognitive analytics.
of cognitive analytic tools. However, uses in state and local government health care, law enforcement, and governance for the delivery of public services may be the new frontier. Though these representative use cases and business value articulation are compelling, organizations will likely need more well-defined use cases for making the trek to the new frontier.

There are some early examples of public sector organizations using advanced computing and data analytics. As agencies learn to leverage the machines to handle many of the manual processes around the data and hypothesis formulation, cognitive analytics may play a greater role. For example, the Centers for Medicare & Medicaid Services (CMS) have been using predictive modeling in detecting fraud in Medicare and Medicaid claims for several years. On the local level: Miami-Dade County in Florida is making use of advance analytics to predict crime, while Rio de Janeiro is using the technique to create precise highly localized weather forecasts and anticipate severe weather threats to the city up to three days in advance.

To function in a world of cognitive analytics, not only are new algorithms needed, but also different skills and processes from today. How will organizations identify and train for these new roles? For public sector organizations, adopting cognitive analytic techniques has some significant barriers. First and foremost is translating the concept of cognitive analytics into action. Not only does it require capital investment to acquire new infrastructure, to build new capabilities and new models, but the real challenges require change management efforts to enable adoption amongst the analysts to teach them how to interpret the results generated by the machine. With a machine doing more intelligent analysis, analysts need to be able to decipher the results—including how to interpret false positives. Lastly, without a clear business case to justify the cost, getting funding for broad adoption may be difficult, but smaller pilots may yield valuable insights and foster sponsorship.

For many public sector organizations, the ever-increasing volumes of data are quickly outstripping the available manpower. Shifting from a more structured computing paradigm to using cognitive analytics requires a major culture shift for many organizations. Introducing a probabilistic, discovery-oriented approach that works collaboratively with human partners to enhance their decision-making abilities is an adjustment for organizations that tend to prefer predictable, deterministic results. Finally, another barrier for public sector organizations is the lack the human capital needed to adopt these advanced works and what benefits it offers. To effectively adopt and leverage this trend, agencies will have to recruit, train, and retain research, science, and technology savvy individuals.

Lessons from the front lines

• **Compelling use cases can spark interest in cognitive analytics.** There is growing interest in the potential of this approach to augment and enhance the performance of agencies’ human resources, but CIOs need to understand the capabilities of the technology, the roles it can play, and the steps needed to make use of it. These use cases can then be used to rally the organization, influence future budget planning, and find early champions and adopters needed to drive and sustain early adoption.

• **Cognitive analytics can enhance human decision making.** Cognitive analytics not only makes it possible to complete routine tasks more rapidly, it also has the capability of improving decision making and to identify patterns that are difficult or impossible to detect using conventional techniques. Some of these applications have tangible benefits in the real world. Some organizations are teaming to effectively...
mine the vast quantity of data to find new answers. For example, in electronic health records (EHR), the Department of Veterans Affairs’ (VA) Informatics Computing Infrastructure is supporting research by the Consortium for Health Care Informatics Research. Together they are looking for ways to “…unleash the information content of EHR to advance knowledge that improves the care of Veterans.”

- **Adoption is also about the users, not just the technology.** Analysts spend years, even decades developing their models, refining their hypotheses, and interpreting the results. Bringing in machines—not just to crunch the numbers faster, but to look for new patterns, and develop new hypotheses—can be very disruptive. It will take time for the analysts to trust the new tools, to validate the scientific methods and output, and—for others—time to accept the need for such advanced computing capabilities in the first place. Change management is important. Involve users up front, and include a core set of them throughout the testing and adoption cycles. Cognitive analytics tools are based upon learning machines. Both the machine and the analyst need to learn as the capability matures. Having pilot users dedicate time each week to help test and refine the capabilities can help spur buy in and ultimately lead to successful adoption. At the end of the day, it may be their reputation, and someone else’s life, on the line.

Getting started

- **Yes, you can start small.** Apply the technology to a specific, targeted task. Allow the teams to learn the tools, trust the methods, and adopt the tools into their daily workflow. Then develop the business case that documents the value added from adopting this new approach, for an application to scale.

- **Identify the applications where using cognitive analytics would make the most sense.** Agencies should ask, “How will we leverage cognitive analytics for mission and day-to-day operations?” Organizations should make a short list of areas where analysts are overwhelmed with the volume, variety, or velocity of data. Consider areas where it could make an immediate meaningful contribution, either to alleviate backlogs or improve performance. Missions that perform analysis on a day-to-day basis or that can benefit from shifting from analysis of historical data to near real-time analysis of current data are candidates, any agency mission whose mandate includes monitoring large numbers of transactions in order to detect fraud may be a good candidate to prove out the new tools.

- **Think of adoption like an HR onboarding process.** The process of adopting cognitive analytics may be akin to bringing on a talented new employee. In order to realize her full potential, she will need to be trained and have time to familiarize herself to the requirements of her job—both the explicit, well-defined tasks and the tacit knowledge that is gained through experience. In the same way, an effective cognitive computing system has to acquire the knowledge it needs to do its job. It must formulate new hypothesis and understanding around the data, use the tools to generate initial outputs, and then trained in making better decisions. As the system becomes more experienced, it can be retrained to test new hypotheses and scale to new data sources. As its performance improves, however, a cognitive system can develop the ability to discover patterns and relationships that goes beyond the human capability.
Bottom line

HAL did not arrive, as predicted, in 2001, but it may now be well on the way to becoming real. What was, literally, science fiction just a few years ago is quickly becoming a new capability. The idea of computer as intelligent coworker is in the not-too-distant future. Interacting with computers, tapping them to process natural language, and generate hypothesis will become routine as we come to rely on them to carry out tasks on our behalf that were either tedious or simply untenable due to scope or scale. Now is the time to start considering where this kind of advanced analytical capability can make a distinctive contribution to enhancing public sector operations.

Authors

Aditya Padha, principal, Deloitte Consulting LLP

Adi Padha is a leader within the Deloitte Consulting LLP Federal technology practice. He has over fifteen years of industry knowledge and client delivery experience to help clients better assess and manage their IT enterprise.

Avijeet Sinha, principal, Deloitte Consulting LLP

Avi Sinha is a leader in the Information Management practice. Avi’s experience is in data management, data governance, advanced analytics and large scale IT modernization focused on regulatory issues.

Endnotes

Industrialized crowdsourcing
Sometimes more is better

Enterprise adoption of the power of the crowd allows specialized skills to be dynamically sourced—from anyone, anywhere, and only as needed. Companies can use the collective knowledge of the masses to help with tasks from data entry and coding to advanced analytics and product development. The potential for disruptive impact on cost alone likely makes early experimentation worthwhile, but there are also broader implications for innovation in the enterprise.

Enterprising adoption of crowdsourcing can allow specialized skills to be dynamically sourced—from anyone, anywhere, as needed—for everything from data entry and coding to advanced analytics and product development. The potential for disruptive impact on cost alone could make early experimentation worthwhile, but there are broader implications for innovation in the enterprise.

Sun Microsystems co-founder Bill Joy said it well in 1990: “No matter who you are, most of the smartest people work for someone else.”¹ His intent was not defeatism; it was a rallying cry to tap into the collective experience and enthusiasm outside of organizational boundaries. Today, enterprises are doing just that: harnessing the crowd to help with a wide mix of challenges, from menial tasks and complex needs requiring specialized skill sets to creative endeavors and even strategic planning. The idea of open source talent² via crowdsourcing is becoming industrialized—growing in scale, sophistication, and importance as an alternative staffing model. The goal is not just cost savings but also quick access to specialized resources, the ability to dynamically scale up (and down) around workloads, and geographic coverage in quickly changing markets.

Businesses have a rich history of trying to tap into crowds, using consumer surveys, focus groups, and experiential marketing to provoke customer engagement. Product R&D, in particular, has seen significant activity, with open innovation campaigns launched by many large companies, including 3M, BMW, General Mills, and Stanley Black & Decker.³ More recently, companies have moved to flatten and rewire their structures, making it easier for people within the organization to connect with information and specialists to grow ideas and solve pressing problems across a wide spectrum of domains.

There’s a crowd for that

The business applications of crowdsourcing run the gamut from simple tasks to complex solutions. Below is a sampling of the categories and emerging platforms for harnessing the crowd.

- **Simple, task-oriented crowdsourcing.** Companies need arms and legs to execute simple, short, transactional units of work. Language translation services, data entry, photograph tagging, and transcription are popular items that allow large workloads to be split across remote workforces. Routine tasks that require physical presence such
as performing store pricing checks, pulling products during recalls, restocking retail shelves, or serving as data collectors, also fit into this category. Crowdsourcing platforms such as Amazon’s Mechanical Turk, Gigwalk, TaskRabbit, Elance, Field Agent, and Quir fill this niche with an on-demand labor force, often global, numbering in the hundreds of thousands and performing millions of jobs.4 The goal is not just low costs but also speed and scale.

- **Complex, experience-based crowdsourcing.** Complex tasks require abstract thinking, specialized skill sets, and sophisticated problem solving. The crowd is typically made up of diverse, qualified individuals, including software engineers, data scientists, artists, designers, management consultants, and hobbyists with advanced academic degrees or industry experience. Tasks typically require not just scale but also creative problem solving, with the goal of achieving breakthroughs to old problems through innovative thinking. Platforms for this type of crowdsourcing include 10EQS, crowdSPRING, Kaggle, oDesk, and Tongal.

- **Open-ended, idea-generating crowdsourcing.** These applications involve challenges oriented around invention, idea generation, and product and brand innovation. Breakthroughs may come from specialists or, increasingly, from the general public. The challenge becomes one of provoking and harvesting that potential. Corporations are increasingly entering into partnerships with crowdsourcing platforms in this space to focus their efforts. Examples include General Electric’s opening of its patent library to Quirky5 and Qualcomm’s Tricorder challenge with the XPRIZE Foundation.6 IdeaConnection and InnoCentive are other platforms in this space.

- **Funding, consumption, and contribution crowdsourcing.** Large enterprises should be aware of three other models of crowdsourcing that are gaining momentum. The first is crowdfunding, in which entrepreneurs solicit sponsorship from the masses, looking for support or capital to develop ideas, products, and businesses. Indiegogo and Kickstarter are two of many platforms in this space. Collaborative consumption models have also emerged, in which certain assets are available “as a service” to the crowd. Automobiles through Uber and lodging through Airbnb are two examples. Finally, we’re seeing platforms where the crowd contributes ideas and information, sharing knowledge that could be useful to others. The open source software movement and Wikipedia are based on this model. Other more recent platforms include Crowdtap and Soursmap.

Battalion at the ready

How is this different from outsourcing or temporary agencies that have been around for decades? Industrialized crowdsourcing providers leverage platforms that can match buyers to a much broader base of sellers while reducing many of the administrative hassles, combining cloud, mobile, social, and web technologies to create new marketplaces.

For location-based assignments, individuals carry GPS-enabled devices that provide on-the-spot data entry and performance verification. Others may provide bidding systems, processes for billing and payment collection, performance monitoring, and performance ratings. Platforms can provide easy access to specialists from many walks of life—professionals, freelancers, and hobbyists—who have the motivation, qualifications, and flexibility to create innovative ideas and execute assignments promptly. For temp agencies or outsourcers, the talent pool is constrained by their rosters.
In crowdsourcing, the needle in the haystack comes to you, with skills and interests aligned with your ask.

Buyers can access large pools of people in short order, typically at low transaction costs—a few dollars per store visit or pennies per photo tag. For free agents, these assignments allow them to earn extra money with fewer commitments and more flexibility than traditional employment offers. And individuals qualified for these projects are often attracted by intrinsic rewards beyond just money—prestige, competition, learning, or job opportunities. Many crowdsourcing platforms provide rewards or leaderboards, letting talent be recognized as leaders in their fields.

Some of the more compelling results come from harnessing the crowd via contests. These can be offered for entertainment or prestige by applying gamification techniques. Alternatively, top talent can be invited to compete on an assignment by offering financial incentives for the more effective responses. Sponsoring companies pay only for “winning” solutions while gaining access to a wide range of ideas. Talent has the freedom to select projects that match its interests and ambitions and is given a platform to showcase its work. Colgate Speed Stick used this model to spark a Super Bowl ad for the bargain-basement price of $17,000, compared with nine-figure investments associated with traditional agencies. Allstate sponsored a competition in which the crowd created a liability prediction model that was 271 percent more accurate than the original.

Leading companies are blasting through corporate walls with industrialized solutions to reach broader crowds capable of generating answers and executing tasks faster and more cost effectively than employees. Companies are also gaining access to niche, unproven experience that might be hard to find and retain in-house. And with the crowd, you pay only for the task being completed.

The crowd is waiting and willing. How will you put it to work?

A sampling of crowdsourcing platforms

<table>
<thead>
<tr>
<th>Platform</th>
<th>Description</th>
<th>Founded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigwalk⁠¹</td>
<td>A mobile, flexible workforce for jobs in the field</td>
<td>2011</td>
</tr>
<tr>
<td>oDesk⁠²</td>
<td>A tool for hiring and managing remote freelancers</td>
<td>2005</td>
</tr>
<tr>
<td>Kaggle⁠³</td>
<td>Competitions for predictive modeling and analytics</td>
<td>2010</td>
</tr>
<tr>
<td>Tongal⁠⁴</td>
<td>Collaborative contests for video production</td>
<td>2008</td>
</tr>
<tr>
<td>Quirky⁠⁵</td>
<td>A product design incubator and marketplace</td>
<td>2009</td>
</tr>
<tr>
<td>Kickstarter⁠⁶</td>
<td>A global funding platform for creative projects</td>
<td>2009</td>
</tr>
</tbody>
</table>

Users Number of contributors in the community

<table>
<thead>
<tr>
<th>Platform</th>
<th>Number of contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigwalk⁠¹</td>
<td>350,000</td>
</tr>
<tr>
<td>oDesk⁠²</td>
<td>134,200</td>
</tr>
<tr>
<td>Kaggle⁠³</td>
<td>4,500,000</td>
</tr>
<tr>
<td>Tongal⁠⁴</td>
<td>659,000</td>
</tr>
<tr>
<td>Quirky⁠⁵</td>
<td>5,419,582</td>
</tr>
</tbody>
</table>

Jobs Number of completed projects

<table>
<thead>
<tr>
<th>Platform</th>
<th>Number of completed projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigwalk⁠¹</td>
<td>4,000,000</td>
</tr>
<tr>
<td>oDesk⁠²</td>
<td>150</td>
</tr>
<tr>
<td>Kaggle⁠³</td>
<td>299</td>
</tr>
<tr>
<td>Tongal⁠⁴</td>
<td>150</td>
</tr>
<tr>
<td>Quirky⁠⁵</td>
<td>411</td>
</tr>
<tr>
<td>Kickstarter⁠⁶</td>
<td>53,728</td>
</tr>
</tbody>
</table>

Crowd wars: The “fan”tom menace

In 2013, Kellogg’s Pringles teamed with Lucasfilm’s Star Wars to launch “The Force for Fun Project,” a Tongal-enabled contest challenging consumers and fans to design the next Pringles television commercial.10 By engaging a crowdsourcing platform, Pringles hoped to open its doors to access new ideas and inspire fresh, fan-driven digital content while generating millions of impressions.

The Force for Fun Project was staged in three rounds, with a bonus “wild card” round to identify additional finalists. First, fans were invited to submit a 140-character vision in the “ideas round.” The top five ideas advanced to the “pitch round,” where filmmakers could present a vision for a video production based on one of the five ideas. The winning pitches, as identified by Pringles and Star Wars executives, advanced to the final “video round,” receiving a production budget to bring the pitch to life. In the final round, seven finalists were selected for a chance to win The Force for Fun Project grand prize, which included a $25,000 cash prize and a national television spot.

To drive additional buzz for the video finalists, Pringles and Star Wars solicited 10 die-hard fans and bloggers to feature the videos (with additional, behind-the-scenes content) on their own social platforms.11

The six-month initiative generated over 1,000 idea submissions, 154 video pitches, over 1.5 million YouTube views, 6 million social impressions, and over 111 million overall impressions. Furthermore, the contest and winning videos received media coverage across mainstream media and digital outlets. On September 24, 2013, the winning commercial was broadcast to over 12 million viewers during ABC’s series premiere of Marvel’s Agents of S.H.I.E.L.D.

Civic crowdsourcing

As the budgets for civic organizations continue to shrink, municipalities, nonprofits, and other public organizations are reaching out to the public through crowdsourcing, which allows civic organizations to tap into their constituents for tools and services at a fraction of the cost of traditional sourcing approaches.

One example is the City of Chicago. After Mayor Rahm Emanuel signed an executive order making all non-private data available, the city sought ideas for providing the data to the public in a usable way.12 Targeting local software engineers, hobbyists, and “hackers,”13 the city initiated a crowdsourcing effort that yielded a number of app proposals, ranging from a 311 service tracker to a tool displaying real-time subway delays.

Another example is the Khan Academy, a nonprofit organization that provides free educational content online. It uses volunteers to translate the website into different languages—crowd-provided localization services. A Spanish site was released in September 2013, and videos have been translated into more than a dozen languages.14

The City of Boston introduced the Citizens Connect mobile app in 2008, encouraging Bostonians to report problems ranging from broken streetlights to missed trash pickups. The reports are connected to the city maintenance tracking system, allowing work crews to be rapidly deployed to fix problems as reports come in and alerting citizens...
when work orders are resolved. Since the app debuted, the number of reports has risen from 8,000 in 2009 to more than 150,000 in 2012.15

Have patents, will innovate

Product development and innovation can take years for large companies to develop from initial idea to an item available on retail shelves. Start-up company Quirky is challenging current wisdom by crowdsourcing the product development process, shortening the invention timeline of new products from years to weeks.

In 2012, Quirky caught the attention of GE when it launched 121 new products and sold 2.3 million units.16 The compressed development schedule impressed GE leadership so much that the company opened its patent library to the Quirky community to enable development of new consumer products.

Products developed by Quirky begin as one of approximately 3,000 ideas submitted weekly by the Quirky community. As ideas are submitted, community members vote for the ideas they like. Those with the most votes are reviewed by industry specialists and community members who select products for production. During development, the community influences the product roadmap by voting on issues ranging from color and price to engineering. With four products completed,17 the Quirky and GE team plan to release dozens more over the next five years, with GE already providing $30 million in funding.18
Crowding store shelves

Innovation is likely at an all-time high in the consumer products industry. Traditionally, new initiatives and technologies took months, or even years, to implement. Today, the timeline can be weeks. Consumer product companies and retailers are finding benefits in rapid experimentation to keep up with the pace of change and stay on the leading edge of innovation.

A leading retailer chose to experiment with crowdsourcing to improve its data collection. It engaged with Gigwalk—a company that taps into the general population to perform micro-tasks for enterprises. Millions of “gigwalkers” use a mobile app that matches them with available jobs, or “gigs,” based on their geographical area and skillset. Participants are then promptly paid for executing those tasks.

The company participated in a pilot program to investigate a hunch that stores were missing out on sales because of out-of-stock products. The company set up a series of gigs to monitor and collect data on the stocking of its stores’ displays. It was hoping that by collecting and analyzing this data it could identify an opportunity to decrease lost sales.

The company wanted to use new technologies and techniques to tackle age-old industry challenges around out-of-stocks. It started by defining customer scenarios and identifying the specific data to be collected. The crowdsourced team would walk into more than a dozen stores twice a day and identify the missing products. A team member could scroll through a list of the company’s products on the mobile app, click the ones that were missing, and use the drag-and-drop menu to enter product information.

The pilot went live a month after conception, but the first week yielded subpar results, with only a 21 percent task adoption rate among the available resources. So the company changed the way the gig was constructed and how the crowd would be incentivized. For example, it realized the term “SKU” was not well understood by many consumers; to aid comprehension, the company more clearly showcased the data that was to be collected. In addition, the company adjusted the pricing structure to reward “gigwalkers” for completing additional store audits. The new model also disclosed the goals and value of the company’s crowdsourced data collection initiative. The changes proved to be powerful. In the second week the adoption rate was 84 percent, and in the third and fourth weeks, the rate rose to 99 percent.

The crowdsourcing experiment enabled the retailer to create datasets around its products. By creating a visual heat map, the company was able to view, store by store, which products were out of stock throughout a day across its stores in the pilot group. It was also able to improve the internal processes that corresponded to those products and reduce the number of out-of-stock items. The company estimated it could save millions of dollars if the piloted process enhancements were implemented in stores across the country. The retailer also created a geospatial map to identify routing issues that might be contributing to out-of-stock items, and was able to make changes to its distribution methodologies accordingly.

At a reasonable cost, and in a relatively short period, the company was able to use crowdsourcing to collect data; glean insights about its products, brands, and distribution; and improve processes to reduce its risk of lost sales.
CIOs have one of the hardest roles in business today: They need to manage reliability, performance, and security while simultaneously guiding innovation and absorbing new technologies. Talent is a massively limiting factor—especially with regard to disruptive technologies like data science. Along with other techniques, crowdsourcing can offer a way to address these challenges.

I see two primary areas where companies can leverage the power of crowdsourcing. The first is in the micro-task world, where a company can create small pieces of work to outsource. The second is in the engagement world, where a company can use a crowdsourcing platform for a defined role such as software development. It’s easier to do the latter, but as we atomize processes to smaller and smaller tasks, there is no reason those cannot also be outsourced. The dilemma emerges when you get to mission-critical processes. Outsourcing those can carry enormous risks, but it can also provide incredible scalability. I predict that in the next several years it will become more common, with startups leading the charge and larger organizations following suit to remain competitive. In information-based industries, this is likely to be crucial. Quirky, a consumer packaged goods (CPG) startup, manages a community of 500,000 inventors to submit ideas. Airbnb leverages the crowd to supply rooms for people to stay in.

Regardless of which approach you take, I believe that crowdsourcing is here to stay. The number of people online is projected to increase from 2.4 billion today to 5 billion by 2020. These minds, armed with their ever-more-affordable tablets of choice, will dramatically increase the general availability of intellectual capital. And the technologies and resources now exist for virtually anyone to become skilled in anything very quickly. So the question becomes, “How will you adapt?”

The first step for the C-suite is to gain awareness: Many executives I talk to are unfamiliar with crowdsourcing. To CIOs who think, “That’s interesting, but not for me,” I would say that if you’re only looking for innovation internally, you’ll likely find yourself in trouble. There is too much happening outside your company walls for you to risk ignoring it, let alone not leveraging it. Consider the newspaper business, which was disrupted by Craigslist, or the music business, which was disrupted by the iTunes application. Your business counterparts should expect that they will be disrupted even if they don’t yet know in what way. For this reason, I urge traditional businesses to figure out how to cannibalize themselves, or someone else likely will. Yes, there is discomfort and risk involved, but that can be mitigated, and it is ultimately less dangerous than your business failing.

When you tap into the crowd, you sacrifice certainty for breadth of creative input, but as long as the crowd is large, you have the potential for incredible results at fractional costs. We’re entering a world where businesses are either the disruptor or the disrupted, and there is no middle ground. I believe that taking advantage of trends like crowdsourcing can help companies keep the upper hand.
Understanding how to use crowdsourcing to help reach organizational goals may not be intuitive, and the range of potential projects and platforms can add to the confusion, especially as you’re educating your business counterparts. Data security, privacy, and compliance risks may be raised as roadblocks. That said, every industry can find acceptable areas in which to experiment, perhaps in unlikely places. Goldcorp is a mining company that shared its top-secret geological data with the crowd, offering $500,000 for finding six million ounces in untapped gold. This $500,000 investment yielded $3 billion in new gold in one year.²²

Tapping crowd power through an online platform is a low-risk investment with potentially high returns, but only if you choose appropriate projects.

- **Scope.** Focus on a clear and specific problem to solve—one that can be boiled down to a question, task, or request with measurable definitions of success. One of the benefits of crowdsourcing comes from garnering ideas that aren’t limited by your organization’s preconceptions of how your business or market works. The scope of a task can require deep domain experience but should not be dependent on your own organization’s context.

- **Focus on gaps in your organization’s own abilities.** Begin your search in areas where your own talent gaps have held back progress. What could you learn or accomplish if you had affordable manpower readily available? What complex problems have confounded your people? What solutions seem out of reach, no matter what you try? These may be problems worth pitching to a crowd that isn’t contaminated by “what’s not possible.” Crowds are likely to consider data or information that insiders assume is irrelevant.

- **Keep an open mind.** Crowdsourcing is rarely initially championed by a C-level executive, but the CIO may be in a position to help educate business leaders on its potential. A broad perspective across the enterprise, combined with an open mind, may help CIOs recognize unexpected applications that could benefit the organization. Leaders should foster a culture where appropriate crowd experiments are encouraged while minimizing security, privacy, and compliance risks. Employees may feel threatened by crowdsourcing, perceiving it either as a “big brother” tactic or a means to replace the existing workforce. Consider making crowdsourcing a tool for your employees. For example, the sales team for a consumer goods company can use a crowdsourcing app to harness cheap labor to perform the mundane parts of their job. By letting your employees orchestrate the crowd, concerns can be alleviated.

- **Get ready for what’s next.** Crowdsourcing is in the early stages, but it’s not too early to consider long-term opportunities for new ways to get work done. Could a native mobile app that feeds directly into your systems streamline field data collection and reporting in the future? Could the time come when it would make sense to provide access to corporate assets to free
agents? A crowdsourced labor pool will become a legitimate component of many organizations’ distributed workforce strategy. Start thinking now about what policies and processes need to be in place. Incentive structures, performance management, operating models, and delivery models may, in some cases, need to be redrawn. Use crowdsourcing as a tangible example of the shift to social business—allowing early experimentation to make the case for more profound investments and impacts.

Bottom line

Crowdsourcing is still in its early stages, but today’s online platforms are sophisticated enough to provide substantial benefits in solving many kinds of problems. The potential for disruptive impact on cost alone makes early experimentation worthwhile. More important are the broader implications for innovation in the extended enterprise. Today you can expand your reach to engage talent to help with a wide range of needs. It’s important that your organization has the ability to embrace new ideas that may be generated by your crowdsourcing initiatives. That means industrializing not just for scale and reach but also for outcome.
Authors

Marcus Shingles, principal, Deloitte Consulting LLP

Marcus Shingles is a leader in Deloitte Consulting LLP’s Innovation group. He works with corporate executive teams to better understand and plan for the opportunities and threats associated with radical innovation driven by the exponential pace of discovery, invention, and technology.

Jonathan Trichel, principal, Deloitte Consulting LLP

Jonathan Trichel is chief innovation officer in the Strategy and Operations practice, responsible for developing new products, services, processes, and business models to drive commercial growth. He is also a trusted advisor to executive teams on growing profitable customer relationships.

Endnotes

21. *Tech Trends 2014* is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple, Inc.
CROWDSOURCING harnesses the collective experience of a wide range of people to solve problems, make decisions, obtain services, and generate ideas in a decentralized way. The Internet and other technological advances have made crowdsourcing more accessible and widened the potential pool of outside specialists that organizations can call on for help. Today, we see crowdsourcing becoming industrialized—growing in size, scope, and sophistication and becoming an integral methodology to gain access to specialized or specified skills within, across, and outside an organization, on demand.

What is different for the public sector

The benefits of using industrialized crowdsourcing within the public sector loom large. The size, scope, and complexity of public sector issues at times call for creative problem solving and coordinated collaboration to build and share knowledge. With increasingly tighter budgets and the need to stay several steps ahead of various threats, tapping into the crowd can potentially produce results quicker and cheaper and provide public sector organizations with new information and data. Today, there are pockets within the public sector using crowdsourcing techniques, but generally, public sector entities are still several steps away from true industrialized crowdsourcing. In order for this trend to become prevalent in the public sector, public sector organizations will likely need to make the necessary cultural and tactical shifts to incorporate crowdsourcing as part of their standard business processes so that they engage with individuals beyond traditional borders using more sophisticated methods, tools, and platforms at scale.

Some recent international and U.S. public sector initiatives are showing the promise of industrialized crowdsourcing in the examples that follow.

In 2012, Iceland became the first country ever to crowdsource its constitution, taking to social media to collect ideas on how to govern the country. Though impressive in its scale and reach—over half the country’s electorate participated—the proposed constitution was ultimately defeated in parliament, highlighting that it might be some time before citizen-driven policy is viewed by all as legitimate.

In 2007, the Transportation Security Administration (TSA) launched its IdeaFactory designed to solicit input from the agency’s employees about how its processes could be improved. One of the earliest ideas—submitted by a TSA agent in Denver with a passion for skiing—introduced “diamond lanes” for experienced travelers, a concept similar to the varying difficulty levels identified on ski slopes for beginner, intermediate, or expert skiers. By creating a separate lane for frequent fliers, TSA found that it could streamline the screening process and reduce stress for the public.

While the TSA has confined its crowdsourcing to its own employees, other projects have reached outside the confines of their own organization. The Smithsonian Institution’s Digital Volunteers Project turns ordinary history enthusiasts into archivists by recruiting more than 2,500 people to transcribe nearly 18,000 digital documents in the museum’s vast collection online.

These early examples show promise; however, there are several hurdles that are potentially making it difficult for industrialized
crowdsourcing to gain momentum and adoption in the public sector. Some barriers to overcome include the hesitancy some individuals or groups feel in providing free work for public sector entities and a lack of standards around platforms to help the public sector perform this repeatedly—and at scale. Another hurdle involves the sensitive nature of certain types of data and subject matter and the hesitancy to open up information to the “outside.” Public sector culture might mean that leaders initially say “no” to crowdsourcing—due to fear of potential data breaches, working with individuals without proper security clearances, or exchanging ideas on a nonsecure platform. In addition, protecting personally identifiable information is always a major concern. Issues surrounding security, trust, and risk are pervasive—not only for security-related agencies—but generally for many public sector organizations. For crowdsourcing to work on an industrialized scale there has to be a shift in mindsets—and, in some cases, it may warrant mandates from executive leadership to spur action—to penetrate cultural barriers.

Finally, many public sector entities use an established, rigorous procurement process for obtaining services from outside organizations. The traditional way the public sector obtains information through a competitive Request for Proposal process is a longstanding mechanism that could be augmented with industrialized crowdsourcing. If the public sector wants to use crowdsourcing as a repeatable, scalable process for using innovative services and solutions, there will need to be a measured movement away from the traditional procurement process. A movement should include strategic thinking about how this process might work across many functions of the organization, not just IT.

Lessons from the front lines

• **The platform helps unleash potential.** Well-integrated business processes surrounding a technology platform can help public sector organizations harness the potential of crowdsourcing by making it easier to facilitate information flow and collaboration in a repeatable and...
standardized way. An effective platform should also provide mechanisms to build trust between the participating parties, as well as filters that help distinguish valuable information, ideas, and contributions from the “noise.” In the public sector, properly deployed platforms may allow communities of users to develop expertise, new concepts of operations, and repeatable results. For example, Geneva, Switzerland created an online video game platform that citizens can play to help digitize and categorize public property records.6

• **It is about matchmaking.** Industrialized crowdsourcing leverages platforms and tools to match public sector entities with a much broader base of individuals that want to help solve a particular problem, tackle a certain task, or provide a needed skill. To ensure the best “match,” a public sector organization seeking to mobilize ideas, skill sets, or solutions externally should decide what kind of incentives (whether personal or monetary) will most likely attract people with those skills or ideas to work on its problems, and are within regulations and policy to offer. Monetary awards are not always necessary: The Smithsonian project attracted interested amateurs willing to donate small amounts of time to an interesting assignment. In another example, students were motivated to contribute to CDC ology, a platform build to cultivate public health-related ideas, in order to add to their resumes, and for the hope of future employment in the public health field.7

• **People will often invest for “the win.”** Challenges that require substantial commitments of time may require generous awards to motivate participation. Yet, generous awards need not be solely monetary in nature. Engaging people’s personal goals, dreams, and eminence desires can also be powerful motivators. Having a prize with sufficient monetary value brings great attention—and can lead to great notoriety. For example, Defense Advanced Research Projects Agency’s (DARPA) “grand challenges” have attracted a large number of well-qualified participants by offered multimillion dollar prizes for successful responses to such formidable challenges as developing a self-driving car or, more recently, building an autonomous robot (which, DARPA acknowledged, “was designed to be extremely difficult”). In almost every case, the value of the total time invested by competitors exceeds by a large margin the cash value of the prize being offered.

• **It is a venue for “who knows …”** There is power in multidirectional collaboration—providing the mechanisms necessary for various constituents to collaborate with an agency and each other—and also bringing in interested parties who are not necessarily obvious to solving small and big problems. Beyond just “who knows what”—finding the subject matter specialist in a given area—finding how things are done and what could be done differently is important too. It is important for organizations to get the problem out to communities who may have different industry or technical experience, so that solutions to other problems (including algorithms, processes, or tactics used in other industries) can be brought to light, and public sector organizations should not forget the potential close to home. Sometimes people on the frontlines or very close to the problem have simple solutions. One such approach is the Presidential SAVE Award (Securing Americans Value and Efficiency) which enables U.S. Federal employees to help improve government.9 Sometimes an untapped “consumers” view can provide the “why or why not” something is inefficient or valid perspective. In 2010, a Bureau of Prisons employee in Wisconsin suggested the government switch to an opt-in model for paper copies of the Federal Register, which were
mailed to her workplace every workday. This solution yielded hard savings as the majority of users access the documents online. Another example includes a shift to Senior Transit Fares for employees as soon as they are eligible. In the D.C. area, this change would lower the cost of the employee’s travel by 50 percent, with no loss in the effective benefits for the employee.

Getting started

- **Start small, but big enough to matter.** Organizations do not need to go after the biggest problems to adopt industrialized crowdsourcing. The first step is to pick a problem that is appropriate for a crowdsourcing approach, then identify the target audience—either internal or external (or both)—who will be asked to help solve the problem. Carry out a pilot with an interesting and engaging topic and apply the lessons learned to future efforts. In the beginning, public sector organizations may need to consider the appetite for crowdsourcing and leadership’s comfort level. It is not just a suggestion box in the corner. Proper investments in expertise and organizational participation are needed to evaluate and then implement the relevant ideas. Start small in the scope of the problem set, but engage the breadth of the organization. Enthusiasm levels and culture may drive how organizations get started.

- **Think flows, not rows.** Consider a new mindset and shift to information flows instead of rows. Instead of starting with a well-defined set of requirements and a specific “product” or end state in mind, brainstorm, and refine a hypothesis first, and see what kind of answers come back from traditional and new communities. Start by phrasing the question or information you are looking for correctly in order to tailor the responses that come back. Consider the appropriate feedback mechanisms—including frequency, timing, and venue—as they are essential in any crowdsourcing effort. As organizations ask others to participate, they have to be ready to respond, evaluate, and implement any ideas coming in. In the TSA example mentioned above, a steering committee evaluated the top ideas and identified a way to implement (or not).

- **Take an iterative approach.** The idea of using a new, open-ended process to achieve results, gain information, and obtain skills may make public sector organizations (who are subject to congressional inquiries and public scrutiny) nervous, but the good news is that it is possible to approach this trend incrementally—to start with small tasks, gain experience, and scale up to larger opportunities. TSA’s experience with the IdeaFactory is a good model for an iterative approach: after an initial pilot program, the team responsible for the program enhanced its functionality, reengineered the entire idea evaluation process, and completely redesigned the program’s website to make it more user-friendly and emphasize its community-building features.
Bottom line

Crowdsourcing may not be technically difficult, but it represents a paradigm shift in the way the public sector thinks about and solves problems. Industrialized crowdsourcing offers a new way to break down barriers by tapping into fresh thinking that can solve tough problems or spark new approaches. However, to truly impact public sector organizations, crowdsourcing needs to provide on-demand access to specialized or specific skills from new channels, across industries, and at-scale using new procurement approaches and spanning idea to execution—“industrialized-sized” from start to finish.

This does not necessarily require a leap into the unknown. Public sector entities can explore industrialized crowdsourcing in a manageable way that gradually incorporates a powerful new source of input to their organizations.

Authors

JR Reagan, principal, Deloitte & Touche LLP

Dr. JR Reagan, DProf, CISSP, CISM, CRISC is US Federal Chief Innovation Officer and also leads the HIVE (Highly Immersive Visual Environment), a state-of-the-art demonstration and development center located with the Center for Federal Innovation in Arlington, Virginia.

Eric Bristow, director, Deloitte Consulting LLP

Eric Bristow is a leader in Deloitte’s Federal Systems Integration practice. He primarily works with clients in the National Security space, helping them identify ways to use technology and Agile delivery to drive mission results.
Endnotes

6. Eggers, Hamill, “Five Ways Crowdsourcing Can Transform the Public Sector.”

10. Ibid.
11. Ibid.
Digital engagement

Context + content for marketing . . . and beyond

Content and assets are increasingly digital—with audio, video, and interactive elements—and consumed across multiple channels, including not only mobile, social, and the web, but also in store, on location, or in the field. Whether for customers, employees, or business partners, digital engagement is about creating a consistent, compelling, and contextual way of personalizing, delivering, and sometimes even monetizing the user’s overall experience—especially as core products become augmented or replaced with digital intellectual property.

DIGITAL is at the heart of business—reshaping customer interaction, rewiring how work gets done, and potentially rewriting the nature of competition in some markets. Today’s digital technologies include mobile, social, and the web, but wearables and the Internet of Things could dramatically expand the definition in the years ahead. The underlying intent is simple: using technology to design more compelling, personally relevant, engrossing experiences that lead to lasting, productive relationships, higher levels of satisfaction, and new sources of revenue. Driving digital engagement.

First stop: Sales and marketing

Tapping digital channels to advertise, market, sell, and provide customer care is far from new terrain for many companies. Early efforts have focused on coverage and consistency: Do I have a digital presence where my customers are spending time? Do the various channels provide consistent information, services, and brand experience? Even as some companies struggle with these foundational elements, customers expect new levels of digital engagement.

Today’s markets demand intimacy and synchronization across channels—providing seamless, personalized experiences to customers who are time-, place-, and context-aware. Customers want to be able to connect via mobile, web, call centers, kiosks, and emerging technologies—and they expect the experience to pick up where the last interaction left off. Second-screening (providing synchronized, complementary content simultaneously across two channels) has gained popularity in media and entertainment, with other industries following suit. And it doesn’t stop with digital. Sometimes dubbed omnichannel, digital engagement also looks to connect the digital experience with physical interactions—in-store, on-site, and via customer and field service personnel.

Digital engagement requires a commitment to content as a discipline, backed by a technical and operational backbone. This backbone enables the rapid creation, delivery, and curation of assets, personalized to the individual according to location, activity, historical behavior, and device or service. This enables personally relevant and timely interactions that are “just right” in their level of detail, utility, and privacy.

For CIOs, many of the foundational moves in digital engagement may be happening outside of their direct control. Chief marketing officers and newly minted chief digital officers
are likely defining the roadmap for big parts of the digital backbone—content management, web analytics, campaign management, search engine optimization, email optimization, and social listening. Realizing the full potential may require hooks into customer relationship management (CRM), sales force automation, e-commerce, and back-office processes such as order, inventory, pricing, and fulfillment management—areas IT is well-prepared to help drive. The CIO can also provide guidance and stewardship for responsible adoption of these digital technologies, preserving the “-ities” of security, reliability, scalability, interoperability, maintainability, and capacity.

Let’s get digital: New products (and markets)

The implications of digital engagement are even more interesting when you look beyond sales and marketing. It is a universal opportunity, regardless of whether a company’s product or service assets are physical or digital. But as more industries’ core products and services are replaced or enhanced by digital offerings, the same commitment to digital content, asset, and intellectual property (IP) management moves from marketing enabler to strategic imperative.

The media and entertainment industry has been leading this charge as a significant percentage of revenue continues to move from physical to digital channels across the industry. Financial services, retail, and health plans are also undergoing transitions to digital. And with the advent of embedded sensors and low-cost connectivity, life sciences, consumer, and industrial products companies are increasingly enhancing their core products with digital services—from turbines to soft drink dispensers to toys.

Pharmaceutical companies are creating companion apps to support patients—creating new value beyond the molecules while inspiring brand loyalty. Ball bearing manufacturers are including on-vehicle.
sensors to offer adjacent services for fleet management and route optimization. After impressive consumer adoption, fitness trackers are being endorsed by health plans for wellness programs. The broader “quantified self” movement has brought new players into hardware and software markets, from consumer apparel companies to retailers. Users are trading their personal information for enhanced experiences, sometimes even paying for the privilege.

Longer term, the progression of 3D printing may cause a fundamental shift in product strategy, bringing a rise in digital-only products in these traditional industries. When a spare part can be downloaded and produced by customers themselves, effectively protecting, managing, and monetizing the underlying digital IP may become as critical as managing any other product. At a minimum, new approaches for managing digital assets and rights will probably be needed. But the implications may be far more disruptive—requiring rewired sales structures and incentives, reshaped channel partnerships, and new ways to take orders, provision products, monitor usage, bill, settle, service, and support.

The enterprise awaits

There is tremendous opportunity to apply digital engagement principles within the enterprise to reengineer how your own employees interact, work, and grow. The same digital backbone put in place for external stakeholders can be used to drive internal engagement across almost every process and domain.4

Now is the time for CIOs to help their businesses define a digital vision while helping marketing integrate its activities with those of sales and operations. Perhaps more importantly, the CIO can secure IT’s role in helping to drive the company-wide transformation behind enterprise digital adoption and in making a longer-term strategic pivot from physical goods to digital services.
Driving new savings, sales, and loyalty

Many global brands have a legacy of semi-autonomous regional marketing teams delivering local solutions—an approach that may not add up to a sum greater than the parts. Instead, they may find themselves paying for the same digital marketing services in multiple regions to multiple agencies with little to no economies of scale. The result can be millions of dollars in duplicate spend, an explosion of inconsistent websites, a fragmented customer experience, and lost opportunities to enrich engagement.

Recognizing that there was a better way, one leading auto manufacturer created a cost-savings business case for a new, global digital marketing organization. The new organization could potentially cut tens of millions of dollars in avoidable spend by consolidating processes, governance, and technology enablers and by reducing the company’s dependence on external agencies—all while retaining local differentiation where needed.

The company’s global digital marketing approach includes a unified customer experience with regional variations, a governance structure with the authority to direct spending, and a transparent operating model that brings the digital tools and services to the business. With this new approach, digital teams have the opportunity to focus on more ways to engage customers rather than on the daily blocking and tackling of managing websites and e-mail campaigns.

Reimagining the online experience

In 2010, Intel set out to completely re-architect the existing Intel.com website—hundreds of thousands of pages serving millions of visitors each month—into a consistent, dynamic, and highly relevant digital experience. The effort focused on three primary objectives: use powerful technology with best-in-class capabilities, create an engaging and innovative user experience, and provide a scalable and stable publishing process for the business and its vendors.

To create this new and distinctive digital experience, Intel involved the lines of business, marketers, IT staff, software consultants, creative agencies, and specialty vendors. The cross-functional team worked together to build out the new system following an iterative process with parallel development of user experience, technical implementation, and content creation, migration, and localization.

In less than a year, Intel was able to provide a new online experience that has won multiple user experience and design awards. The company has also seen measurable improvement in visitor ratings and satisfaction. By dynamically delivering rich, relevant content to visitors, Intel.com has seen a total traffic increase of 67 percent per year, an 82 percent site satisfaction rating, and a 55 percent conversion rate of visitors clicking through from Intel’s shop out to retailers and OEMs. The solution has also resulted in a 50 percent reduction in publishing costs and the ability to make content updates in hours instead of weeks, allowing Intel to provide a rich, relevant digital experience for its customers, partners, and employees.
Calling all content

Rapid technological advancements such as mobile and cloud, as well as consumer demand for digital content across multiple channels, are causing rapid changes to the telecommunications landscape. Sensing the positive disruption these changes could likely have on its business, Verizon Communications began exploring ways to monetize the digital landscape.

Traditionally, the digital media supply chain—the process by which digital content (such as news clips, movies, and television shows) is delivered to consumers—has been decentralized across many vendors. When digital content is produced, different entities store, catalog, and distribute the content with manual hand-offs between the companies. With its infrastructure and network already in place, Verizon built on the existing investments to provide an offering for digital content for media and entertainment companies. As a result, Verizon launched its Digital Media Services division, providing customers with a means to deliver content to consumers.
The one-stop digital shop

Adobe, a global software company focused on creativity and digital marketing solutions, had a product marketing website that was one of the most trafficked sites on the Internet, with more than 35 million unique visitors per week (75 million including download users). But the company wasn’t capitalizing on its site traffic for online purchases, and instead directed customers to alternate sources where they could purchase its products.

Adobe wanted to increase its online direct-to-consumer revenue by transforming its website into a seamless product marketing and e-commerce site—one that would not only be functionally richer, but also engage each customer. In the process, it also wanted to leverage its own digital marketing capabilities, especially its online marketing analytics capabilities—which had been bolstered through its acquisition of online marketing and analytics company Omniture—and its digital experience capabilities, enhanced through its acquisition of Day Software. In parallel, Adobe decided to undergo a strategic shift to move from its traditional model of selling boxed software to a subscription-based, cloud-driven software model—a transformation that prepared the company to be almost completely digital.

In pursuit of those goals, Adobe created an engaging, integrated marketing and e-commerce site to showcase and sell its products. Personalized for each customer based on his or her navigation profile and past purchases, it included a customized product carousel with relevant products for each customer and a recommendation engine that allowed Adobe to push related promotions. Responsive design allowed for a seamless experience across browser, tablet, and smartphone—dynamically rendering high-definition visuals, video content, and contextual product and promotion information based on the user’s profile and specific channel. And the site allowed customers to explore Adobe’s subscription services, the Creative Cloud for digital media and the Marketing Cloud for digital marketing, alongside traditional products—accelerating awareness and adoption of the new products. The site was built using a combination of Adobe’s digital marketing capabilities, including Experience Manager for Content Management, Test&Target for improving site functionality, Recommendations for driving cross-sell and up-sell, and SiteCatalyst for driving online analytics and reporting.

In addition to personalizing the customer experience, the website provided an intuitive authoring environment for back-end management of content and workflow—simplifying the process of updating the site and decreasing the time needed to make changes from weeks or months to hours or days. Maintenance complexity dropped as the global page count dropped by 40 percent, and marketing efficiency increased by 78 percent. The self-managed nature of the site also led to decreased operational costs, as built-in intelligence drove promotions and offerings automatically, saving time that would have otherwise been spent on manual intervention.

Adobe achieved significant results from its efforts around digital engagement. Its online revenue has increased 39 percent since the project began three years ago—surpassing the $1 billion mark in 2013. Checkout conversions increased 16 percent, with a 48 percent increase in lead conversion. Revenue per visit increased on targeted content. But perhaps more importantly, Adobe transformed its own digital presence into a leading example of how to put its tool set to use—showcasing the opportunity for digital engagement at a time of dramatic innovation in sales and marketing.
Consumer technology has evolved significantly in the last decade alone. When I first started in the business at Facebook, we designed products for one environment—the desktop web browser. Today, we find ourselves fully immersed in the post-PC era, where people use technology throughout the day across a growing combination of laptops, smartphones, tablets, and other mobile devices. And the number of devices that people need to access their data will likely only escalate over time. So it’s important for businesses to be design-centric and maintain a deep appreciation for how their products and services fit into the cadence of a user’s daily life across different devices.

At Dropbox, we focus on how to make things reliably simple for our users. People’s stuff is commonly on the brink of disaster—hard drives crash, devices are lost, and phones are accidentally dropped and broken. Safe, reliable online storage is a fundamental building block of our service, but we have ambitions far beyond mere backup. We want to build software that makes people’s lives more productive and memorable. I credit the cofounders of Dropbox with being very design-minded. Even in its earliest form, Dropbox was an elegant product—a “magic folder” on the desktop computer that was native to the operating system environment people were already familiar with.

The design organizations I’ve worked with understand two things. First, in order for a product to have global appeal, it should be conceptually basic and universally intuitive. Conceptual simplicity comes from a deeply empathic and highly iterative approach to design. Second, world-class experiences require technical experience coupled with an understanding of how a product fits into a person’s day-to-day life. These two concepts continue to grow in importance as we become an increasingly connected society. Managing a user’s attention and transferring context across devices require a multidisciplinary approach to exploration and prototyping.

It is also important for business leaders to understand that great design doesn’t happen on the first try, or even on the tenth try. Designers should get in front of consumers, field-test their prototypes, and relentlessly iterate on their work in order to achieve perfection. As products have increasing amounts of access to personal data about their users—names, locations, interests, the people they work and socialize with—software makers have a powerful opportunity to personalize product experiences in ways that were previously impossible. We can “roll out the red carpet” and offer a singular experience that makes our customers feel as if the product or service was handmade for them. The true potential of digital engagement is creating experiences rich with empathy and context across multiple touch points—driving customers from being users to loyal advocates.

Simple, elegant, and intuitive design can be a competitive edge for a business, and it begins with executive leadership buy-in, an uncompromising focus on hiring top talent, and a cultural commitment to great design. When designed accordingly, digital engagement can provide seamless, accessible, personalized solutions for customers.

Soleio Cuervo, head of design, Dropbox

My take
Where do you start?

Many companies have content management systems to support certain types of information on the web, but few have gone beyond that to tackle the broader range of digital content. That’s likely because they’re looking at content the wrong way. Content is still isolated or tied to specific business units or geographies when it should be anchored to a customer or product. Complicating matters, the volume of content is out of control—especially with the rise of big data signals. Even the fundamentals need attention. Many companies lack processes and systems to understand the real costs of their activities, and they have no easy way to know which content elements are current, which should be retired, and how they should come together to support business operations. Some companies use third parties to maintain and manage their digital content, thereby delegating what may have easily become a source of competitive advantage. The potential scope is huge, but in practice, attention should be focused on five specific areas:

- **Web, mobile, and social content enablement.** Digital engagement should be seamless across channels. Achieving this will likely require responsive design and digital content that can be dynamically rendered and delivered based on the end user’s context—in different formats, with varying granularity, and with different actions exposed. Day-parting, behavioral analytics, and social activation are parts of this drive toward context-rich personalization. As Yahoo! CEO Marissa Mayer said, “The ultimate search is the one where you’re the query”—taking into account your history and preferences. That starts with a robust content backbone—technically and operationally.

- **Self-service and governance.** Centralizing digital content management can enable more efficient and effective communication. Which tools, skills, and resources are needed to allow the business to create, deliver, and curate the content its customers and other stakeholders need? Managing the platform and campaigns at the core—while allowing for personalization and activation on the edge—enables a mix of global control and localization. Some organizations are looking to build in-house digital supply chains to manage the full lifecycle of web, mobile, social, and on-premise content, allowing real-time experimentation and responsiveness.

- **Ease of access.** Instead of holding content captive in a particular repository, unlock it. Make content easily accessible across multiple channels, countries, and stakeholders—potentially including customers and enthusiasts.

- **Digital IP and asset management.** What information assets are you managing? Who controls them? Where are the assets located? How are they protected today? Are there plans to monetize them? Do you have the resources needed to edit and improve them? Which parts of your business will become digital in the next two years? What competencies and practices should be put into place to make that happen? How do you manage rights for IP usage across and beyond the enterprise? What new revenue streams are possible?

- **Cost reduction.** Take time to inventory digital content across the enterprise. At what rate is new content being developed, and how does it break out by function? Streamlining the distribution and management of digital content, regardless of where it resides, is the first step toward containing costs.
Bottom line

Digital engagement is a way to drive new investments in marketing, similar to those that have improved finance, supply chain, and customer relationship management over the past few decades. Beyond efficiency and cost savings, digital engagement presents new ways to enhance customer loyalty and competitive advantage—riding the wave of changing behaviors and preferences for contextual interactions. Organizations should “think Big Mother (relevant, useful services) rather than Big Brother (omnipresent, creepy intrusions).” And with more parts of the business becoming digital, the CIO has the opportunity to build a new legacy for IT—a responsive, forward-looking organization, an enabler of innovation, and a driver of digital engagement.
Authors

Christine Cutten, principal, Deloitte Consulting LLP

As a leader within Deloitte’s Customer Transformation practice, Christine Cutten helps companies reach and connect with customers, build brands, and grow the bottom line. In her 10-year tenure with Deloitte, Cutten has helped many CMOs rethink their marketing strategies and operations.

Barbara Venneman, principal, Deloitte Consulting LLP

As the national digital content leader within Deloitte Digital, Barbara Venneman leads a team of talented practitioners that helps clients establish digital strategies, operational models, processes, and emerging technologies to deliver business results.

Endnotes

Digital engagement

A public sector perspective

As mobile, social, Web, and the Internet of Things blend more seamlessly into our everyday lives, an organization's digital strategy is becoming critical to its ability to engage with customers and employees. Businesses and agencies have responded to the online evolution: from creating websites, to adopting e-commerce, to establishing a social media presence, and, most recently, to creating mobile applications. During the next few years—as the public sector competes for mindshare, support, and talent—leveraging digital tools to engage with the next generation and deliver relevancy will be even more important.

Governments are already using digital and the web to connect with their constituents. “E-government” can take a number of different forms, including G2C (government to citizen), G2E (government to employee), G2B (government to business), and G2G (government to government). But digital engagement for the public sector goes beyond simply using the Internet to serve up information and conduct transactions.

The basic premise of digital engagement is that organizations need to be wherever its customers are and need to offer them a seamless experience in the physical and virtual worlds, as well as across multiple networks. This engagement implies doing more than building new distribution channels for existing products and services or even coordinating multiple distribution channels. It means engaging citizens or constituents as customers via the mission, and includes the systems of government that support the mission, including procurement, personnel, finance, and employees. Digital engagement includes seizing the opportunity to create new value—and potentially new influence or support streams—from new types of experiences provided by the new digital environment.

A 2012 United Nations report on this topic stated that “in delivering e-government for the people, public services are designed to be responsive, citizen-centric, and socially inclusive.” A global survey conducted for the report found that South Korea topped all countries on an “e-government development index,” while the United States ranked fifth. The same year, the White House formally recognized the need to move toward greater digital engagement by formally launching a Digital Government Strategy. In announcing the strategy, U.S. CIO Steve VanRoekel, described it as “a coordinated, information- and customer-centric approach to changing how the government works.”

The public sector has an untapped opportunity to improve effectiveness and efficiency in engaging with citizens, employees, and customers on a more relevant basis, and the pace of its adoption in this trend has room to accelerate.

What is different for the public sector

In the private sector, the need to vie for market share and long-term customer loyalty prompted the shift to more digital channels. Public sector organizations, which are shaped by legal mandates and rarely feel direct competitive pressure, may have been somewhat insulated from these forces. Competition, however, does exist in the public sector—for relevant mission information, analytics, and intelligence or, more simply, for budget, access, and mindshare. To remain relevant and stay competitive, public sector organizations
should move toward digitally engaging their constituents, stakeholders, and customers.

One public sector agency less insulated from competition is the U.S. Postal Service (USPS), whose revenue is directly affected by competitors ranging from private delivery services to email. Even as the USPS works to modernize in order to compete effectively, it has also been a pioneer in exploring ways of digitally engaging its customers. Via USPS.com, customers can find a nearby post office, file a change of address, suspend mail delivery, print postage, and track mailings. The comprehensive website is just one manifestation of a larger initiative, started in 2008, to “focus on what matters most to customers” in order to “create engaged, loyal customers by satisfying their needs better than the alternatives.” Other agencies or organizations may look to follow suit to make their products or services more user-centric.

Organizations need to support the growing population of digital natives who are already digitally engaged, along with expanding beyond the legacy channels used to reach its current customers. However, the sensitive nature of content or privacy concerns of electronic data, as well as the wide-ranging technical capabilities and adoption across the public sector poses innovation challenges and has limited the progress to date.

Despite these challenges, there are promising examples of public sector agencies pursuing initiatives to use technology to gather public input, raise awareness for the mission, and increase participation. The Environmental Protection Agency’s Developer Central is designed to serve students and professionals by providing access to environmental data. To encourage users, the site allows them to see sample code and build on existing projects in addition to doing their own projects. The Department of Education’s Federal Student Aid Office maintains a comprehensive, user-friendly website that provides information about college preparation, as well as applying for aid. In addition, the agency holds virtual “office hours” by hosting a monthly live question-and-answer session on Twitter using the #ASKFAFSA hashtag.

In addition to these G2C applications, federal agencies are involved with G2G efforts to better serve specific groups of “consumers.” For example, the Pentagon is seeking to find ways to deliver important battlefield information to its warfighters through multiple distribution channels. Another critical G2G example involves national intelligence agencies that need to supply analysts—their core consumers, who shop competitively—with the (inherently digital) information they need to do their jobs. One potential strategy is to provide the users with highly-custom, tailored “packages” that allow users to decide whether they want direct access to raw intelligence data or whether they prefer to get information that has been prescreened and pre-interpreted. The focus is on shifting the engagement to the user-selected data and formats for a personalized product and enhanced customer service. In another agency, the daily briefing has been moved from paper to a tablet device, allowing leaders to drill down instantly on whichever topic is of most interest or contains additional supporting analysis. Again, the user can interact with the information digitally and customize the experience. The potential exists for the user to engage further—to flag an item and add commentary or notes. To serve its customers better, these agencies are trying to move from a static “push” model for supplying information to a more refined “pull” model that provides only the information each customer needs.

Lessons from the front lines

• Digital engagement is a two-way street. The strength of digital tools is not their ability to deliver information to users. Instead, the strength inherent in digital engagement is the ability to empower public sector stakeholders to feel engaged with government through meaningful
interactions. It is important to think of this approach not in terms of only communicating digitally, but of enabling digital exchanges or dialogues with key groups. As the digital economy continues to grow, citizens’ expectations about having convenient access to custom or personalized information and services, along with the ability to interact or provide feedback when and where they want it will likely continue to escalate.

- **Every public sector organization has multiple constituencies to address.** Public sector organizations understand that they need to communicate effectively with citizens, but many organizations have needs to communicate with other parts of government, including contractors, other stakeholders, and with their own staff. In fact, building employee engagement is a particularly important challenge. According to a 2013 Gallup report, work units with the highest level of employee engagement have significantly higher productivity, less turnover and absenteeism, and fewer safety incidents than units with low worker engagement. Overall, public sector organizations often face a broader size and scope, which makes effective digital engagement more complex.

- **Enter the share economy.** The idea of open access to information is appealing, and the government has made conscientious efforts to be more open. In 2012, the White House’s Digital Government Strategy directed all federal agencies to take immediate steps to expand transparency, participation, and collaboration. This is appealing to a new generation that focuses on a “need to share,” although there may be countervailing forces that work against the free flow of information. The culture of some public sector organizations is to restrict access just to those with a “need to know.” The universe of people who want to know what the government knows is growing, and advocates of open access argue that there can be singular benefits to widely sharing information.

Getting started

- **Think about people, assets, and channels.** Before moving down the digital engagement path, ask a few questions. Who are the people we serve—internally and externally? In what form(s) do these stakeholders want to get information? What kind of relationship do they want to have with us as a public sector organization?

 Next, ask: What information do we hold that would valuable for others to have or to share with their own networks? How can we add value to that information by making it available in ways that are convenient for users? Are there risks in sharing that information, and if there are risks, how can they be mitigated?

 Then ask: How are we currently distributing information? Are there digital channels that we do not use now that would add value to that information or increase the effectiveness of outreach and citizen support? How much do we know about using those channels, and what do we need to learn?

- **Play as a team—find a common driver.** To drive digital engagement, public sector organizations should leverage work done in both the private and public sector by learning together and sharing insights, experiences, and resources through face-to-face meetings, use cases, publications, and blogs. Embracing digital engagement is a journey and agencies may need help. One source is the General Services Administration’s Digital Innovation Services Center that has published some guidelines and experiences via #digitalgov to help agencies and organizations get started.
Organizations also need to find a common driver. Competition is a powerful motivator of innovation, and it is a well-established driver for engaging customers and constituents with greater relevance and timing. For example, political campaigns, fund raising, and the information economy are highly competitive markets within the public sector. Each of these examples has been effective in providing the motivation to advance digital engagement and, in some cases, activated them to further their cause (See also: Social Activation).

Bottom line

The Internet is in the midst of evolving from a separate place that people visit episodically to a pervasive environment that accompanies them throughout their daily lives. With this shift comes a growing expectation that resources will be instantly available on demand.

Though digital engagement is not as pervasive and mature across the entire public sector, today more and more of its organizations are looking to connect and engage through digital channels. Though government and other public sector organizations may not always be driven by competitive pressure, they are ultimately responsible for serving the needs of their constituents, which increasingly implies offering the option of getting those needs met and maintaining relevance through multiple digital channels. The potential of digital engagement is that it can provide a new level of service for constituents, enabling government to fulfill its mission more effectively than ever before.

Authors

Scott Large, director, Deloitte Consulting LLP

Scott Large is a leader in Deloitte’s Federal Technology practice focused on technology, strategy and architecture for the Intelligence Community. He previously worked in the Intelligence Community for over 23 years, ultimately becoming the Director of the National Reconnaissance Office.

Pat Nigro, director, Deloitte Financial Advisory Services LLP

Pat Nigro, CPA, CIRA, CFF, MBA, is a leader with Deloitte’s Forensic and Dispute Services practice. Mr. Nigro provides value to Deloitte’s strategic clients through his extensive experience in forensic investigations, program management and bankruptcy services.
Endnotes

Wearables
On-body computing devices are ready for business

Wearable computing has many forms, such as glasses, watches, smart badges, and bracelets. The potential is tremendous: hands-free, heads-up technology to reshape how work gets done, how decisions are made, and how you engage with employees, customers, and partners. Wearables introduce technology to previously prohibitive scenarios where safety, logistics, or even etiquette constrained the usage of laptops and smartphones. While consumer wearables are in the spotlight today, we expect business to drive acceptance and transformative use cases.

Wearable computing technology, dating to the 1960s' helicopter pilot head-mounted displays, is not new. Even the familiar office identification badge is a type of wearable. But with recent materials science advances driving technology miniaturization and battery improvements, we're standing on the brink of widespread adoption.

Wearables are devices worn on the body in items such as watches, glasses, jewelry, and accessories. Or in the body—ingested or surgically implanted. They consist of three modular components: sensors, displays, and computing architecture. A wearable device may include one, two, or all three functions. A smart watch may contain narrowly purposed sensors that gather data about the user and his or her environment, but it may have limited display functionality and no computing power. Computing may occur in the cloud or on a multipurpose device such as a smartphone. The display may be on a nearby screen or in a pair of smart glasses, or it may even use an earbud or pendant for verbal response. Think of wearables as an ecosystem—expanding capabilities that are individually interesting but more compelling when combinations are harnessed. This modularity is allowing new manufacturers to enter the market, driving demand from both consumers and enterprise users.

The mobile revolution placed powerful, general-purpose computing in our hands, enabling users to take actions in the digital world while moving about in the physical world. By contrast, wearable technology surrounds us with devices that primarily enable other devices with digital information, which in turn support us in taking real-world actions.

So why move forward now?

Few enterprises have tapped the full potential of smartphones and tablets, and many IT organizations are still learning how to design and build elegant, intuitive mobile apps. Also, the enabling infrastructure required to secure, deploy, manage, and maintain mobile assets is still being developed. And many industries are just learning how to think beyond today’s business scenarios: how to, instead of veneering existing processes and systems, come up with new ideas and even business models that were not previously possible. With so many opportunities left to explore using conventional mobile devices—smartphones, tablets, and laptops—why
should business leaders consider another wave of investment?

Wearables’ value comes from introducing technology into previously prohibitive environments—where safety, logistics, or even etiquette have constrained traditional technology solutions. Wearables can be the first seamless way to enable workers with digital information—especially where hands-free utility offers a clear advantage. For example, using wearables, workers in harsh environmental conditions can access data without removing gloves or create records without having to commit data to memory and then moving to a sheltered workstation.

The primary goal of wearables is to enable users to take real-world actions by providing relevant, contextual information precisely at the point of decision making. Wearables shine in scenarios where using a laptop, phone, tablet, or other conventional device may not be appropriate as well as in making use of the data gathered by sensors. Meeting this goal requires generating data in real time and intelligently pushing it to a device or devices according to the user’s current context—just-in-time digital logistics. These use cases suggest that wearables may be most valuable deep in an organization’s operations, rather than in customer-facing applications.

Making sense of sensing

Wearables can also form a bridge to related disciplines. Augmented reality (AR), for instance, overlays digital information onto the real world. Many smart glasses scenarios feature AR concepts, and overlaying reference images and graphics can be a powerful enhancement to wearables. Likewise, the Internet of Things (IoT) refers to the explosion of devices with connectivity and—potentially—intelligence. Be they motors, clothes on a retailer’s shelves, thermostats, or HVAC ducts, IoT is rapidly adding to the context map that will amplify wearables’ impact.

Sensors permeate the Internet of Things and are a leading focus of consumer wearables. This is especially true in the “quantified self” movement in which bracelets can gather personal data or sports gear and clothing can help monitor health. Consumer-facing enterprise applications, such as beacons that affect the behavior of wearable displays or smartphone apps, rely on consumers being surrounded by a network of always-on sensors.

Corporate uses of sensors may include temperature readings of an employee’s environment or sleepiness indicators for fleet drivers. These sensors are not necessarily smart by themselves; rather, they harvest data that is processed and displayed elsewhere.

Going to work

The potential uses for wearables are staggering. In Australia, firefighters are being outfitted with a data-transmitting pill that can detect early signs of heat stress. Health care insurance companies may offer policy discounts for members who quantify their healthy lifestyles by wearing fitness-tracking devices, similar to auto insurance companies’ in-car efforts to track safe driving habits. On the manufacturing floor, workers may be able to view metrics for nearby equipment on a smart watch. AR overlays in a warehouse can guide a worker who needs to find, move, pick, pack, and ship a particular product.

Field installation, service, and maintenance professionals are being outfitted with smart glasses to access documentation, procedural tips, and skilled advice—from the top of a cell tower or beneath a boiler.

Similar potential exists on the consumer side; Gartner predicts that “the worldwide revenue from wearable electronic devices, apps, and services for fitness and personal health is anticipated to be $1.6 billion in 2013 increasing to $5 billion by 2016.” But the market is—and will likely continue to be—highly fragmented. This fragmentation is inherent in a modular ecosystem, reflecting the lack of widely adopted technology standards.
Design principles of wearables

CONTENT
Ascribe to (much) “less is more” for content and its delivery—the design facilitates exceptionally low duration, high frequency use.

COMMUNICATION
Focus on communicating rather than simply displaying data—not necessarily visually, and not necessarily via the device generating the notification.

INFLUENCE
Do not force new behavior, but allow users to adjust their future behavior by providing new information or capabilities.

INTERACTION
Are careful about requiring response from the user—interaction with the device should be minimal and expedite the user’s manual actions.

INTENTION
Use persistent design elements, alerts, just-in-time information, and notifications with discretion.

INTELLIGENCE
Are fueled largely by intelligence from analytics, big data, and sensors, which are often embedded in other devices.

ENHANCEMENT
Leverage the digital world to enhance the user’s behaviors, actions, and experiences in the real world.

NETWORK
Communicate with an expanding community of wearables, data, devices, systems, platforms, services, and software.

More than two dozen manufacturers are aggressively pursuing head-mounted smart glasses. A dozen smart watches are already in the market. And new devices are launching virtually every day—from sensor-rich socks to Bluetooth-powered rings to digital tattoos.10

Luckily, although the lack of industry standards in wearables can lead to policy headaches, a number of uses for wearables can be enabled using tools and governance processes similar to those needed for smartphones and tablets: device management, identity and entitlement management, security policies, content management, and app provisioning. Privacy concerns need to be managed—even though wearables are likely to be more readily accepted in the workplace than in public situations. It’s important that employees perceive that the tool will help them perform more effectively on the job. Over time, social and workplace tolerance may increase, but during these early days, acceptance is a factor that must be considered.

But enterprises should not wait for consumer markets to settle and conventions to be established. Because the wearables ecosystem can benefit from the proliferation of niche players, companies don’t need to hold off until marketplace standards or leaders emerge. The door is open to early experimentation—and to usher in the next wave of mobile innovation.
The doctor is in (your stomach)

For millions of patients with chronic illness, remembering to take a daily dose of medicine can be a difficult task. According to the World Health Organization, approximately 50 percent of patients fail to take medicine correctly and more than 50 percent of medicines are prescribed, dispensed, or sold inappropriately. This may cause doctors to over-prescribe medicine if they do not see the expected results.

Proteus Digital Health has developed a system that includes both a body-worn patch and a small ingestible sensor that supports patients in tracking their medicine usage and health. The ingestible sensor can be embedded into a pill or tablet and consumed with a patient’s prescription. It works like a potato battery—dissolving in the stomach to activate. The ingestible sensor communicates with the patch, which in turn transmits the ingestion data, along with activity and rest patterns picked up by the patch, to a secure application that can be accessed from a smartphone, tablet, or PC. With the patient’s consent, the data can be automatically shared with health care providers, family members, or other caregivers.

Wearable wardrobe

2013 saw an explosion of wearable devices in consumer products, with the “quantified self” movement leading the charge. Fitness and activity tracking devices are predicted to top $1 billion in sales in 2014. Athletic consumer apparel brands such as Nike, Adidas, and Under Armour have either launched wearable technology products or publicly shared plans to enter the market.

The trend is being embraced in the broader fashion and consumer goods industries, with a wide range of emerging categories. Heapsylon manufactures Sensoria smart socks, which track how much a user is exercising. The company has plans to expand the platform to help prevent and manage falls and foot injuries and to collect information that health care professionals can use to provide better-quality care. Reebok’s CheckLight beanie measures the intensity of blows to the heads of athletes participating in contact sports, sending an alert when a blow is moderate or severe. Huggies announced prototype sensor-laden diapers that can tweet parents when their infants need to be changed. And more products are coming, as demonstrated by the high number of wearables on display at the 2014 Consumer Electronics Show.

Hands-free patient care

Philips Healthcare brought wearable technology to the operating table through its proof of concept for using a hands-free device to improve the efficiency of surgical procedures. A surgeon typically reviews numerous screens to monitor a patient, requiring the surgeon to turn away from the procedure at hand. Now, by wearing a headset with a display in the field of vision, a surgeon can monitor required information while keeping both eyes on the patient. The prototype allows doctors to interact with an application derived from Philips’ IntelliVue Solutions. Using simple voice commands, a surgeon can request to view a patient’s vital signs or medical history, which then would be displayed in the surgeon’s line of sight.

Additionally, by giving doctors the ability to observe a patient’s vital signs remotely, Philips’
A new vision for training

CraneMorley, a boutique design firm, creates tools for learning and performance support. Working extensively with clients in the automotive industry, the company has been leveraging technology more and more to drive business performance by creating solutions that target gaps in workers’ knowledge and skills.

At a car dealership, salespeople should be well versed in the technology and telematics their cars are equipped with to effectively sell them to their customers. If a salesperson can’t demonstrate a car’s features, there is a good chance the customer won’t buy the car; on the flip side, if the salesperson can demonstrate the technology seamlessly, the customer could love and buy the car and become a long-term advocate of the brand.

Rather than overloading salespeople with information about the cars, CraneMorley designed training workshops to interactively teach them what they need to know about cars’ telematics and technology features. Twenty-five salespeople were equipped with tablets and placed around six cars. They established their competency in demonstrating the car’s technology features, and if they struggled with one, they could watch a quick lesson on their tablet for help. The instructors were able to see a master view of the salespeople’s tablet programs, and could also insert themselves to help them as required.

The program worked wonderfully—except that the salespeople had to hold the tablets while working through the demonstrations. Identifying an opportunity to pilot wearable technology, CraneMorley has developed a discovery learning training program using smart glasses. Through the use of the glasses, the salespeople are now able to interact with the cars while information is overlaid on the hands-free glasses by the augmented reality software. The ability to actively demonstrate the car’s features allows the salespeople to better remember how to do it again in front of a customer at the dealership.

CraneMorley is exploring other scenarios to expand the smart glasses-powered discovery learning concept beyond training salespeople. One application for the technology could be servicing: As someone is trying to fix a car, he or she could access helpful information or contact an engineer for real-time support—allowing the specialist to see exactly what the technician is seeing in the repair bay and offer immediate guidance. Another application is on the sales floor: Many technologies have been deployed to the sales floor to help customers learn more about cars’ features, such as kiosks, PCs, and tablets, but none have really been effective. Smart glasses could be a tool to teach customers about the cars that interest them in a more personal way, even allowing them to test drive a car without leaving the dealer’s floor.
At APX Labs, we are dedicated to changing the way people use wearable displays, specifically through the use of smart glasses. This new class of devices can provide people with relevant information to achieve tasks hands-free. In the United States, there are 17 million “desk-less” workers—people whose jobs take them away from offices and cubicles into the heart of where business gets done. Think manufacturing, logistics, service technicians, or medical professions. This alone is a $20 billion market for wearable technology—and only a part of the bigger opportunity.

Wearables are a crowded, and growing, ecosystem. We’ve focused on building a platform to lower the barrier of entry for users across multiple markets and form factors of smart glasses. We see the market in two broad categories: heads-up displays (HUDs) and true augmented reality glasses—both of which act as new tools to solve old problems.

With heads-up displays, contextually relevant information is presented via an accessible, but secondary, out-of-eye display. Think Kopin Golden-i and Google Glass. Status, workflow, and supplemental data look-ups are dominating early uses, but more are coming as the development kits have become generally available.

With augmented reality displays, smart glasses are used to present real-time information and services in the user’s view of the world—ideal for the heads-up, hands-free worker. One of our first applications was for the defense industry. “Terminator Vision” was an effective initial use case—using facial recognition and background check services to visually highlight potentially hostile parties as a soldier scans a crowd. Medical use cases are also leading the charge—with the goal of giving practitioners a view of vital signs, electronic health records, procedural guidance, and simple administrative support. Applications for manufacturing, logistics, and in-stadium entertainment are targets for future adoption where large numbers of people are engaged in similar tasks that require access to the same information. More important, companies control and operate the ecosystem surrounding the business processes—simplifying funding and integration challenges.

As the wearables market begins to take off, there’s a bit of a chicken-and-egg phenomenon playing out. In the consumer space, developers won’t get behind a new platform unless there is a substantial market for it, and users have been hesitant to enter the wearables market before there is a defined use case for the product, which is dependent on compelling apps. This is the driving reason that we think enterprises are going to lead the charge—tackling well-defined problems to drive the required volumes to propel developers to opt in en masse.

But we’re still in the early days. Some enterprise customers flock to the technology simply because it’s “cool”—and then try to determine what they can use it for. A better path is for companies to holistically look at the business issues they face, evaluate their options, and determine if smart glasses are the required tool for solving specific problems. We try to help our customers identify what some of those burning issues are—and figure out how the technology will revolutionize the world around us.
Where do you start?

We expect to see an escalating number of wearable computing devices, platforms, and applications that can enable and transform business operations. Now is the time to begin exploring the possibilities that wearables hold for improving supply chains, workflows, and processes to drive down costs and increase competitiveness.

• Imagine “what if.” Think about how your business’s effectiveness could improve if workers had the information they needed at the moment they needed it. What current processes could be discarded or refined? What could people accomplish if a photo or video could replace a paper report? What critical processes—for example, emergency procedures—are difficult for workers to master because they are rarely needed? What if employees could have specific instructions for those procedures delivered at the point of impact? What if a worker had ready access to equipment manuals while repairing an oil rig or bridge cable? What if a worker in the field could show a remote colleague real-time video from his or her point of view—while leaving his or her hands free?

• Kick the tires. As new wearable devices and software applications appear, experiment with various platforms and evaluate the organizations behind them. Do they fit your business operations? Is the vendor viable for the long term? Do you have a pool of early adopters who will likely embrace the technology? Remember that wearables are a modular ecosystem, so if one component doesn’t measure up, the system can adapt to accommodate other players. Experimentation is the name of the game.

• Become an early adopter. Connect with wearable manufacturers and software developers to share your business’s operational needs and explore the possibilities of working together to develop solutions. As companies are looking for beachheads in this new world, there are opportunities for teaming.

• Simplify. Simplify. Simplify. In design, wearables need to be treated as their own beast. Just as the design patterns from desktop, laptop, and the web were not well-suited for smartphone and tablet use, a completely different experience should be designed for wearables. Simplicity is the ultimate form of sophistication, and transparency is the ultimate form of simplicity. User interaction should be kept to a minimum. If a use case requires an explicit user response, it should be limited to spoken commands, gestures, or a gloved knuckle tap. Minuscule displays require discipline in not only what information should be displayed but how to present it; a two-tone simplified graphic can be more effective than a detailed photo. Time sensitivity becomes important, so create “glanceable” awareness of information in the applicable context. The information displayed should be curated to precisely fit the immediate situation or task, with no extraneous data. This extends to the purpose for which a device is used: Don’t design a wearable experience for a function that’s more effectively done on a smartphone, a tablet, or a piece of paper.

• Anticipate data and device management. Data generated by wearable devices could exponentially increase the quantity of
information that your IT organization should store, manage, and analyze. The volume of unstructured data, including pictures and videos, could also escalate. Also, consider how these new devices will be repaired and managed. Assume that bring-your-own-device (BYOD) will happen whether policy supports it or not and that new classes of devices will likely become smart before IT can redefine policies to manage them individually. Strive for simple rules that can govern ever-more-complex behaviors.

- **Engage the workforce.** Ask frontline employees to participate in the imagination process. What persistent problems would they like to solve? What opportunities could be created? Likewise, ask them what concerns they have about the devices, and develop plans to address those concerns. Talk with trade unions and other worker groups to understand and address concerns they may have about using wearable devices. Over time, social and workplace tolerance may increase, but during these early days, focus on employee education and constrain your use cases to those that provide demonstrable benefits to the user.

Bottom line

Wearables targeted at the consumer market are today’s media darlings. Google Glass Explorer parties and Samsung’s Dick Tracy-style watches make for interesting copy. But unlike tablets, which were introduced to the enterprise by consumers, we expect businesses to take the lead in building acceptance and demand for wearable computing devices. As consumer devices, wearables represent a very personal buying decision in which aesthetics and fashion are almost as important as function. But in the workplace, experience and engagement matter. Function can trump form—as long as a wearable is perceived as unobtrusive, safe, and not “creepy.” The challenge is easy to articulate: Rethink how work could get done with the aid of an ever-present computing device that delivers the desired information when it’s needed. Organizations that get a head start could gain an advantage over their wait-and-see competitors.

Authors

Shehryar Khan, principal, Deloitte Consulting LLP

As the mobile lead for the Deloitte Digital service line, Shehryar Khan focuses on helping clients use mobile to drive organizational transformation—identifying opportunities where mobile can truly impact both user and business goals.

Evangeline Marzec, specialist master, Deloitte Consulting LLP

Evangeline Marzec is a specialist master in mobile strategy at Deloitte Digital. Her focus is on the rapid analysis of mobile opportunities and threats for clients across all verticals and on creating frameworks for understanding the impact of emerging technologies on business models.

Endnotes

8. Angela McIntyre and Jessica Ekholm, Market trends: Enter the wearable electronics market with products for the quantified self, Gartner, Inc., July 1, 2013.

Wearables
A public sector perspective

Wearable devices leverage real-time data and put it into the user’s context: Connecting information to a specific place via geo-location, overlaying data with images to create an augmented reality, or even linking to biometric and environmental data.

Consumer use cases have made wearables one of the most talked about technology trends of 2014, and the relevance to the public sector is equally compelling. They have the potential to significantly disrupt the “desk-less” workers on the front lines who need real-time access to the information and experts in order to do their jobs. In fact, the U.S. government, particularly the military, has been a pioneer in the development and use of wearable devices.

Fighter and helicopter pilots have long been equipped with helmets that provide sophisticated heads-up displays with instant, at-a-glance access to critical information. Perhaps the leading wearable example today is the computerized helmet developed for the new F-35 Joint Strike Fighter. Costing a half-million dollars each, the helmet displays critical performance and targeting data and projects a 360-degree view of the environment around the plane, giving pilots the ability to look through the aircraft’s structure in order to see what is directly beneath it.

Other, albeit less exotic, public sector applications for wearable devices are already in use or under development. First responders, for example, have used vests that monitor their vital signs in order to detect excessive stress or dangerous environmental conditions. Police officers use wearable cameras to automatically record their encounters with the public and document the process of gathering evidence in detail. Besides these examples, there are additional compelling public sector use cases. Imagine firefighters, emergency medical technicians, and field inspectors equipped with eyeglasses that provide instant, hands-free access to the information they need to perform their jobs. For Transportation Security Administration (TSA) agents or border guards, wearables with facial recognition capabilities and augmented reality could provide the ability to more rapidly identify persons of interest without being tethered to a kiosk or even having to look down and away during their interactions.

What is different for the public sector

Driven by the growing market for consumer wearables, as well as the advancement of mobile computing and enterprise applications, public sector agencies are expanding wearables for use beyond their own workforce and beginning to develop wearable apps intended for citizens as a starting point. For example, in early 2014, Utah.gov announced the release of OnTime for Glass, an app which was originally designed for smartphones and computers to provide real-time information about public transit schedules, which now provides the same functionality for wearers of Google Glass.

While some wearables may be readily accepted by the public, in other cases its use may create concerns related to data gathering, privacy, and regulations governing citizen data. Virtually any connected device can raise concerns about data gathered by or delivered to such devices. Public sector agencies marketing wearables to citizens may cause users to wonder, “who in the government has my data, and what are they going to do with it?”
The public sector’s use of and its broader adoption of wearables is surrounded by legislative and privacy concerns, particularly when it comes to citizens and citizen privacy. These issues represent unchartered waters, and the emergence of wearables may likely trigger a debate about where and when citizens can legitimately expect to have privacy and where and when their actions can legitimately be tracked by a wearable device. When citizens walk into a government office for service, they should not have an expectation for total privacy. In the wake of the introduction of red light cameras, there has been a general agreement that speeders and other lawbreakers do not have a right to privacy on public roads. Overall, travelers have come to tolerate detailed searches at airports in order to protect their safety. Along with new ways of collecting and receiving data, however, come new ways of thinking about protecting data and the consumers who use it.

In the digital age, there are corporations that may have collected far more detailed data about individual behavior and decisions than has the government. But when the government is collecting data about its citizens, concerns around intrusion and legal uses of the data—which industry may have to worry about, too—may turn into fears about the rise of a surveillance state. The permissible uses of wearables, particularly by representatives of government agencies, is very much part of this debate.

Lessons from the front lines

• **Think “we” for wearables.** Numerous government agencies employ many workers who are not tied to desks. Whether in combat, responding to a natural or manmade disaster, or performing field inspection work, the ability to provide personnel with timely information and to keep track of what they are learning and experiencing is highly valuable. As society becomes more mobile, so does the expectation for access to government services. In many of these situations, functions are not just being carried out by individuals, but by teams of people who need to coordinate with one another to deliver the mission. In the public sector, wearables help the individual, which helps the team to power the mission.

• **Demand is highest the further out you get.** The need for real-time information and reduced lag time is paramount to many missions. The use cases for wearables are particularly valuable in situations where using a laptop or phone is not appropriate or feasible and when response time is critical. For example, providing first responders with immediate access to situational information may help save lives. For example, a firefighter in North Carolina developed an app for Google Glass that can call up addresses or blueprints of specific buildings and can record videos of firefighting operations. Being able to perform all of these functions hands-free is an obvious advantage of an intelligent wearable device. But consider bandwidth, device size, weight, power consumption, security, and costly ruggedization, which can be limitations in the field.

• **Focus on access to data.** By expanding access to information, wearables are part of a movement toward greater access and transparency in government. For the mission and operations, it is about providing information whenever and wherever it is needed. For citizens, it is about better service and helping citizens make more informed decisions. Both groups are looking to interact with the data in new, personal ways. Wearables are part of a movement toward “real time government,” reducing the lag between gaining access to information and acting on it.
Getting started

- **Ask questions.** To begin exploring potential uses, try to answer some questions about the role of wearables: Where could wearables make a real difference in operations or the mission? Who will be impacted? How will individuals and whole teams do their jobs differently? The most impactful use cases for wearables are coming from the field. Find a desk-less worker or team whose job is important to the mission. Akin to the commercial world, identify a use case where public sector employees or citizens could benefit from heads-up, hands-free, see-through, context-rich information and transactions for the task at hand and have the potential to reduce risk, increase productivity or transform the mission. Public sector agencies should also consider data and data security, needed inputs, uses for the data gathered, and relevant privacy and protection governance.

- **Experimenting on a small scale is relatively easy—really.** There are numerous relatively inexpensive wearable devices available today that offer a reasonable level of functionality. Products such as smart watches and glasses can track physical activity as well as provide heads-up displays and improved portable computing. With an understanding of mission requirements and knowledge of the technology and its limitations, an agency can start with a small, low-cost pilot.

- **Consider wearables as add-ons.** In some cases, like the military and law enforcement, personnel already carry a substantial amount of specialized gear for protection and to carry out their duties. Adding sensors or other intelligent functions may be a simple but effective way to upgrade the capabilities of these individuals.

Bottom line

Wearables represent a major change in the way that many aspects of government will operate. Public sector employees equipped with wearable devices can become much more effective in carrying out their jobs. Government can enhance its services by providing valuable content to citizens who can use the information to enhance their own lives. Imagine driver-augmented traffic updates or field personnel serving as intelligent remote sensors, gathering information and then acting from a more complete situational awareness in close to real-time.

In short, wearables are seamlessly weaving into a person’s everyday environment many of the functions of computing and communications technologies that were once confined to the desktop. They provide context to an environment and allow the wearer to gain context from an environment. As a platform to add augmented reality into everyday life, wearables have the further potential to enhance citizen, traveler, and employee engagement.
Authors

Brett Loubert, principal, Deloitte Consulting LLP
Brett Loubert is a leader in Deloitte’s Federal Technology practice, working with CIOs and senior leadership within the Defense Community to develop and refine executable IT strategies to solve their most complex technical problems.

Carmen Medina, specialist leader, Deloitte Consulting LLP
Carmen Medina joined Deloitte after retiring from an almost 32 year career at the Central Intelligence Agency as the Director of the Center for the Study of Intelligence (CSI). She continues to support the Intelligence Community on issues such as social networking and future trends, and also works closely with Deloitte’s Center for Federal Innovation.

Christian Doolin, senior consultant, Deloitte Consulting LLP
Christian Doolin is currently focused on immersive learning technologies and augmented reality for government clients. Christian is a Design Lead for Deloitte’s Center for Immersive Learning, leading the design and development of gaming and simulation solutions to drive engaging learning interactions.

Endnotes

Enablers
Technical debt reversal

Lowering the IT debt ceiling

Technical debt is a way to understand the cost of code quality and the impacts of architectural issues. For IT to help drive business innovation, managing technical debt is a necessity. Legacy systems can constrain growth because they may not scale; because they may not be extensible into new scenarios like mobile or analytics; or because underlying performance and reliability issues may put the business at risk. But it’s not just legacy systems: New systems can incur technical debt even before they launch. Organizations should purposely reverse their debt to better support innovation and growth—and revamp their IT delivery models to minimize new debt creation.

Technical debt is not a new term, but it’s gaining renewed interest. Originally coined by Ward Cunningham in 1992, the phrase describes the “not quite right” code typically introduced with initial software releases because of an incomplete understanding of how the system should work. Organizations that regularly repay technical debt by consolidating and revising software as their understanding grows will likely be better positioned to support investments in innovation. And like financial debt, organizations that don’t “pay it back” can be left allocating the bulk of their budgets to interest (i.e., system maintenance), with little remaining to develop software that can support new opportunities.

Technical debt is often the result of programmers taking shortcuts or using unsophisticated techniques. It’s typically misfeasance, not malfeasance. For example, a developer may copy and paste code blocks without thinking through the longer-term consequences. If the code ever needs to be updated, someone will have to remember to fix it in each instance.

But sometimes, technical debt is simply the result of dealing with complex requirements. To meet a project deadline, complicated proprietary code may be developed, even though simpler alternatives may have been available. With each such action, technical debt proliferates. This is like high-interest, short-term borrowing. If you don’t pay off the debt promptly, compounding kicks in.

The impact of accumulated technical debt can be decreased efficiency, increased cost, and extended delays in the maintenance of existing systems. This can directly jeopardize operations, undermining the stability and reliability of the business over time. It also can stymie the ability to innovate and grow.

Articulating technical debt is the first step in paying off its balance. With new tools for scanning and assessing software assets, CIOs can now gauge the quality of their legacy footprint—and determine what it would cost to eliminate the inevitable debt. A recent study suggests that an average of $3.61 of technical debt exists per line of code, or an average of more than $1 million per system. Gartner says that “current global IT debt is estimated to stand at $500 billion, with the
potential to rise to $1 trillion by 2015. While the idea of debt doubling in a year’s time may seem astonishing, we’re in the midst of unprecedented investments in disruptive technologies—often with deep hooks into core systems. The push for rapid innovation in unproven domains is also leading to compounding debt.

These estimates address only the literal definition of technical debt—how much it would cost to fix the exposed code quality issues. But there’s also another dimension, which we call “architectural debt.” Architectural debt refers to the opportunity costs associated with system outages or the inability to deliver new capabilities. In some cases, architecturally complex defects can absorb as much as 52 percent of the total effort spent repairing defects. They can also derail new initiatives.

Technical debt is not limited to legacy systems; every new project has the potential to add to the backlog. With that in mind, you should incorporate the cost of technical debt into project management processes and portfolio reporting. This kind of transparency can not only raise awareness of quality among development teams, but can also provide a foundation for talking to the business about the hidden cost of IT delivery. By documenting your debt-decreasing efforts, you can account for those efforts—important progress that

Sources:
would likely not otherwise be visible (or appreciated).

The ability to quantify technical debt can provide a common point of reference for the C-suite when you are deciding how to prioritize IT projects for an organization. Typically, technical debt should be paid down within the context of delivering against business priorities by incrementally refactoring existing solutions and using improved development processes to minimize new debt accumulation. Incorporating techniques described in our Real-time DevOps chapter can help reduce waste generated when software is developed.

Some organizations may also need to spur projects that address especially messy issues such as bolstering performance, preventing production issues, or preparing for future strategic investments. The goal is a sustained, prioritized reduction of the balance sheet, where each project systematically improves on the baseline.

For most organizations, technical debt comes with the territory, an unavoidable outcome of decades of technology spend. The big question is: How will you manage the liability? Understanding, containing, and mitigating technical debt can be a platform, not only for a stronger IT foundation, but for a renewed level of trust and transparency with the business.
Lessons from the front lines

Express delivery of quality

To keep up with the over 150 billion pieces of mail delivered each year, the United States Postal Service (USPS) depends in large part on the quality and effectiveness of its IT systems. So when quality concerns became apparent during one of its IT modernization projects and the USPS was facing budget concerns, USPS leadership proactively took action to manage the organization’s technical debt.

First, USPS used the SQALE method for assessing the quality of its technical debt across four software dimensions: reliability, performance, security, and changeability. With a clearer picture of how much technical debt existed and where, USPS developed a roadmap to remediate the critical software issues and transition to long-term sustainment following CISQ standards. For example, USPS instituted automated unit test scripts, minimum code coverage testing levels, and static analysis of the source code. These changes improved application quality and performance.

Going forward, USPS is also applying these same measurable standards to other projects by including them as standard oversight and acceptance criteria in their statements of work. And because incorrect project estimates can introduce technical debt, USPS is revamping its project estimation techniques by requiring the use of both parametric and bottom-up estimating techniques. With these changes, USPS is starting to see both improved quality and more accurately planned IT costs across its portfolio.

Cleaning up shop

DB Systel, a subsidiary of Deutsche Bahn, is one of Germany’s leading information technology and communications providers, running approximately 500 high-availability business systems for its customers. In order to keep this complex environment—a mix of packaged and in-house-developed systems that range from mainframe to mobile—running efficiently while continuing to address the needs of its customers, DB Systel decided to embed processes and tools within its development and maintenance activities to actively address its technical debt.

DB Systel’s software developers have employed new tools during development so they can detect and correct errors more efficiently. Using a software analysis and measurement platform from CAST, DB Systel has been able to uncover architectural hot spots and transactions in its core systems that carry significant structural risk. DB Systel is now better able to track the nonfunctional quality characteristics of its systems and precisely measure changes in architecture- and code-level technical debt within these applications to prioritize the areas with highest impact.

By implementing this strategy at the architecture level, DB Systel has seen a reduction in time spent on error detection and an increased focus on leading-practice development techniques. The company also noticed a rise in employees’ intrinsic motivation as a result of using CAST. With an effective technical debt management process in place, DB Systel is mitigating the possibility of software deterioration while also enriching application quality.
Countdown to zero technical debt

NASA’s Mars Science Laboratory project was classified as a “flagship mission”—the agency’s first in almost a decade. It was a $2.5 billion project to land a car-sized, roving science laboratory, Curiosity, on Mars. The rover launched in 2011 and landed on Mars on August 5, 2012, with the continuing objective of determining whether Mars ever contained the building blocks for life.

Building a roving science lab is an immense challenge. Curiosity is an order of magnitude larger than any rover that had previously landed on Mars: It weighs almost a ton, stands seven feet tall, contains a robotic arm that could easily pick up a person, and includes a laser that vaporizes rocks. Curiosity’s software is essentially the brain of the rover—integrating its many hardware functions to provide mission-critical functionality such as the descent and landing sequence, autonomous driving, avionics, telecommunications, and surface sample handling.

The software initially developed for Curiosity was inherited from previous rover missions. The core architecture was developed in the 1990s on a shoestring budget. The Curiosity project put approximately four years of work into building on top of that architecture for NASA’s most complex mission to date. As the launch date approached, NASA started to see that the project wasn’t coming together: The software had bugs and inexplicably failed tests; there were issues with the hardware and the fabrication of key components.

The project faced a difficult question: Do we push on towards a 2009 launch or delay the mission? The unique aspect of launching a mission to Mars is that the opportunity only exists once every 26 months, when Earth and Mars align. If they delayed the launch two years, there was a risk that the project might be cancelled altogether.

The project team decided to postpone the mission and began an incredible regrouping effort. The software team had to quickly decide whether to fix the current software or to start over completely from scratch. Given the existing software’s technical debt, it was unlikely they could determine the magnitude of the lurking issues, or confidently plan for new project milestones. The decision was made to tear down the foundation and rebuild using the old code as a reference.

The team started from the beginning: revisiting the requirements, software design, coding, and reviews, and testing and implementing standard processes. The team instituted what they called the “Power Ten,” a set of 10 basic rules each developer followed. The team developed coding standards, implemented multiple automated code analyzers and testing tools, and established a cadence of releases—one every four months. They unit tested every line of code and instituted code reviews early in the development lifecycle. Two hundred code reviews produced 10,000 peer comments and 25,000 tool comments—each one reviewed and resolved.

The results were staggering: 3.5 million lines of code, over 1 million hand-written, across 150 different modules. But this time, the numerous bugs and unexplained failures were gone. The standards, though they required additional work, added stability and quality. And with the fresh start, the team were adamant that technical debt be minimized—building a new foundation for future missions.

Though NASA’s approach required a remarkably difficult decision, the results were worth the effort. The world can now watch as Curiosity tells us more than we ever dreamed we might know about Mars. And the achievements of the mission led to the announcement of a new $1.5 billion mission to Mars in 2020.
Combating system complexity

Military Health System (MHS), a unit within the United States Department of Defense, provides billions of dollars’ worth of health services to over 9 million beneficiaries.11 Facing enterprise-wide budget cuts, MHS began looking for ways to provide the same level of care with reduced resources. With dozens of IT systems built over 20 years ago, including clinical systems, supply chain, and billing, MHS recognized that reducing its technical debt was one way the organization could reduce its IT budget and improve business efficiency.

MHS embarked on a transformation with portfolio rationalization at the forefront in an effort to streamline its investments. Using an application health grid that removed potential subjectivity, MHS measured the business value, technical maturity, and cost of each of its systems. Business value was determined by how many business processes are supported. The technical maturity analysis focused on four areas: external stability (an evaluation of third-party software, hardware, and associated vendors); internal stability (an architectural evaluation); system availability; and security. The rationalization effort helped MHS identify over a dozen systems with high levels of technical debt that could be decommissioned—saving the organization over $50 million in ongoing operating costs within the first phase of the transformation.

MHS continues to use data-driven analytics implemented through SEMOSS.12 The transformation that began with portfolio rationalization has now moved into optimization and dynamic portfolio planning. Reviewing a system’s technical composition in combination with functional capabilities allows MHS to protect itself against future technical debt and make informed decisions about its overall IT portfolio.
Technical debt doesn’t just happen because of poor code quality or shoddy design. Often, it’s the result of a series of good or necessary decisions made over time—actions individually justified by their immediate ROI or the needs of a project. There are many examples: skipping a software update or infrastructure upgrade because there wasn’t a clear business benefit; building point-to-point interfaces into a small departmental app to get it into the business’s hands more quickly; choosing a product you already own to build a prototype in order to avoid a drawn-out vendor selection and procurement process.

The path to technical debt can be paved with good intentions, but when combined, can lead you to quality and architectural issues.

But good intentions don’t give you a pass to ignore technical debt. Leading IT organizations can, and should, actively manage and reverse technical debt. These organizations have a vision for robust platforms ready to fuel growth and use nimble business-aligned delivery models to innovate, fulfill unexpected business-driven requirements, and ultimately solve business problems.

There are two aspects that are important to technical debt management. The first is to know where you stand. Reversal starts with visibility—a baseline of lurking quality and architectural issues. Develop simple, compelling ways that describe the potential impact of the issues in order to foster understanding by those who determine IT spending. Make technical debt a metric that your IT organization is conscious of—not just in planning and portfolio management, but in how projects get delivered.

The second is with the actual management of technical debt. There are a couple of ways to approach it: a big bang approach that fixes everything at once (which almost never works) or a selective approach to systematically reduce the backlog. Consider what is needed in the next year or two to assist with achieving your strategic goals. This will allow you to identify the parts of your portfolio that should be upgraded to achieve those goals. When it comes to each of your platforms, don’t be afraid to jettison certain parts.

At Deloitte, we deliberately separate our IT budget into core and business-driven investments so business users can choose investments driven by their priorities. A server upgrade rarely trumps a functional requirement when battling for fixed investment funds. That’s why architecture, platform, and technical debt investments are part of our core investment bucket—with priorities set by the IT organization. My philosophy is: What’s the point of having a CIO if I need a committee to approve every upgrade? By keeping the core investments separate from the business-driven investments, we are able to avoid the technical debt we might otherwise accrue.

Preventing technical debt requires a philosophy that addresses the known and expected requirements with an underlying, agile platform. CIOs need the courage to make the investments that reduce technical debt—and the knowledge and the team to know where and when to make those investments.
Where do you start?

Technical debt calculation can begin when you have clear visibility to the quality of code for legacy systems as well as projects on the horizon. Only with both sets of information can you make the trade-offs necessary to manage technical debt effectively. For companies eager to get ahead of the technical debt curve, here are some important steps:

- **Assess the status of code for all significant investments.** Calculate your technical debt. Know the size of the hole you’re in—and whether or not it’s getting deeper. Evaluate the importance of each system to understand whether the technical debt has to be addressed—and in what timeframe. Aim for surgical repairs when possible, but recognize that some aging systems may be beyond incremental fixes. Prevention is preferred, but early detection at least allows for a thoughtful response.

- **Find out how future investments are dependent on your legacy systems.** Is your architecture ready for new initiatives? Can it scale appropriately? How well are back-end complications understood and fed into planning efforts? Should you launch legacy modernization efforts now to get ahead of impending business demands?

- **Think through the availability of talent to support debt remediation.** For some aging systems, your resources may not be sufficient for cost-effective updating. Talent should be factored into your analysis. Think of it as a multiplier on top of the raw technical debt calculation—and use it to define priorities and timelines.

- **Hold developers accountable.** Consider rating and rewarding developers on the quality of their code. In some cases, fewer skilled developers may be better than volumes of mediocre resources whose work may require downstream reversal of debt. Regularly run code complexity reviews and technical debt assessments, sharing the results across the team. Not only can specific examples help the team improve, but trends can signal that a project is headed in the wrong direction or encountering unexpected complexity.

- **Spread the wealth (and the burden).** Communities are great ways to identify and address technical debt. Peer code reviews are leading practices for informal spot checks. Formal quality assessments by seasoned architects can find issues that would be undetectable with standard QA processes. Learn from open source communities, where quality is continuously refined by the extended pool of developers poring over each other’s code.

- **Determine your debt repayment philosophy.** Companies have different profiles when it comes to debt for the various parts of their asset pools. Debt is not inherently bad; it can fuel new investments and accelerate product launches. But left unchecked, it can be crippling. There’s no single right answer for the appropriate amount of technical debt, but its accumulation should be a conscious, transparent decision.
When CIOs operate like venture capitalists, technical debt is a big part of the financial picture. Without a clear view of the real cost of legacy systems, CIOs lack the information required to make effective decisions about new initiatives and investments. While it’s important not to get obsessed with technical debt, it’s also critical to understand and plan for it. Every new project automatically comes with technical debt as a cost of doing business. Reversing technical debt is a long-term investment, but if left unaddressed, it can bankrupt your ability to build for the future. Capers Jones, a long-term technical debt specialist, once said: “If you skimp on quality before you deliver software, you end up paying heavy interest downstream after the software is released for things you could have gotten rid of earlier, had you been more careful.” He was right.

Authors

Scott Buchholz, director, Deloitte Consulting LLP

Scott Buchholz is a technology leader with 20 years of experience in the areas of solution, enterprise, and data architecture; program management; and IT service management. He leads technology-enabled business transformations, from optimization efforts to full lifecycle implementations.

David Sisk, director, Deloitte Consulting LLP

Davis Sisk is a director in Deloitte Consulting LLP’s US Technology practice. He has extensive experience in the architecture, design, development, and deployment of enterprise applications, focusing on the custom development area.
Endnotes

8. Software Quality Assessment based on Lifecycle Expectations (SQALE) is a generic, language- and tool-independent method for assessing the quality of source code.

9. The Consortium for IT Software Quality (CISQ) is an IT industry leadership group dedicated to improving IT application quality.

Technical debt reversal
A public sector perspective

For many organizations, technical debt comes with the territory. It is often an unavoidable result of decades of technology spend on multiyear, complex programs, combined with heavily structured requirements, a variety of architectural standards, and subsequent years of custom code invariably indebted with programming quality variations, trade-offs, and aging leading practices.

But it is not just legacy systems that create debt; new systems can incur technical debt even before they launch. Debt can be incurred intentionally; for example, by cutting corners or going into production with known code risks in order to meet deadlines and stay within budget, and it can also be incurred unintentionally by failing to put in place adequate software quality control processes during the development life cycle. Each type—intentional and unintentional—can be compounded by broad scope, complex programs with ever-changing requirements, and multiple stakeholders with competing agendas. Moreover, debt cannot be avoided by choosing custom-built systems versus commercial off-the-shelf products—or vice versa. Both can contribute to an organization’s technical debt via, among other things, insufficiently rigorous development practices or the purchase of a product with defects or functional gaps.

The bottom line is there is no shortage of ways to acquire technical debt. The real challenge is how to reduce it.

What is different for the public sector

Gartner estimates that current global information technology (IT) debt is approximately $500 billion, with the potential of rising to $1 trillion by 2015. Although the portion of these figures that belongs to the public sector has not been estimated, it is certainly far from trivial.

A 2012 report from the U.S. Government Accountability Office (GAO) found that federal agencies spend about 70 percent ($54 billion out of a total of $79 billion) of their total IT budgets on operating and maintaining (O&M) legacy systems, leaving just 30 percent for the development of new systems. Though the high cost of maintaining legacy systems cannot be directly attributed to the need to pay for technical debt, “like financial debt, organizations that don’t ‘pay back’ their [technical] debt can be left allocating the bulk of their budgets to interest (i.e., system maintenance) with little remaining to develop software to support new opportunities.”

While it is not uncommon for private sector organizations to spend similar ratios on O&M, industry CIOs often have the advantage of being able to more readily respond to market trends and can often find out-of-cycle funding for new technologies.

The cost of technical debt may manifest itself in several ways, including the delivery of systems that may require excessive amounts of maintenance, not scale adequately, or be insufficient to meet future needs. These costs can make it difficult to take advantage of opportunities for future improvement.
For example, there are still mainframe systems in operation in federal, state, and local governments that run on COBOL or are written in assembly language. Even though these systems may be reliable and still retain some functionality, they are effectively obsolete. In addition to representing an “infrastructure debt,” such architecturally antiquated systems also incur skills debt as the number of people capable of managing them shrinks as tenured workers retire.

Reversing such debt may require public sector organizations to look at people, process, and then technology—three components that are often addressed in the opposite order when it comes to fixing technical debt.

Lessons from the front lines

- **Recognize that enterprise architecture can provide insights into technical debt.** Enlightened agencies recognize the Federal Enterprise Architecture (FEA) is more than a matter of complying with mandated requirements. It can offer a useful way to understand the problem of technical debt. While FEA does not provide tools to eliminate debt, it does offer a road map to help determine the amount of technical debt in the agency’s software portfolio. Such analysis can also identify risk areas and ways to mitigate or avoid them. Enterprise Architecture (EA) is often underutilized, yet it is a tool that can help every CIO to manage and mitigate technical debt.

- **Make compliance and governance work together for you.** IT-related compliance requirements—like FEA as mentioned above—need not be considered just another process to muddle through; mandates and governance frameworks can apply the discipline and rigor needed so that new projects are conducted properly and adhere to industry best practices to minimize future issues. Savvy agencies use the mandates of having an EA and the governance it enables as an opportunity to help identify those technical debt areas to mitigate or minimize technical debt where possible by documenting known intentional decisions around functional and nonfunctional gaps. Others without a strong EA can draw upon leading practices from other public sector organizations to apply and adopt EA disciplines to facilitate the planning and alignment between the mission groups and IT.

- **Standardize systems to minimize skills debt.** Reducing the number of disparate systems or taking a services approach can help reduce the debt burden. By consolidating common tools and languages across systems or services, an organization can simplify the hiring process, make it easier to scale in the future, and focus training on a finite number of skills.

- **Focus on reducing costs and improving the ability to respond to new challenges.** Whether or not an agency is familiar with the concept of technical debt, it undoubtedly understands its consequences. There are strong drivers for public sector organizations to consider new approaches including historically high—and rising—O&M costs and a culture/environment that generally moves at a slower pace regarding technical advancements and course correction. Accordingly, many agencies are looking to shorter, more agile sprints for projects to minimize any new technical debt incurred.

- **Decide when to leave legacy systems behind.** One of the hardest decisions to make is when to abandon a legacy system and move to an entirely new one. For example, is it time to move applications that are running in a government data center to the cloud? Short-term costs may be high, and the move may require entirely new ways of operating; however, the benefits of buying new may outweigh any gains that come from fixing old.
Getting started

• **Quantify the problem first.** Before deciding on an action plan, public sector organizations should first get a sense of the problem’s magnitude. Fortunately, there are methods and tools available to assess the quality and extent of technical debt and predict its impact, as well as the cost to clean up the code. The U.S. Postal Service, for example, leveraged the open source Software Quality Assessment based on Lifecycle Expectations (SQALE) method to measure debt in terms of reliability, performance, security, and changeability. These methods can then be built into future development and modernization efforts to reduce the need to keep fixing problems, putting out fires, and creating suboptimal workarounds for flawed software.

• **Focus on immediate problems.** Rather than attempting to tackle the challenge of technical debt in a comprehensive way, it makes sense to start with the areas of greatest known need. Often the IT team is already aware of defects that have to be addressed. Include a feedback mechanism to capture and address them.

• **Develop a strategy to minimize debt.** The path to improving the process of new development to minimize future debt may be relatively clear, even if it is not easy to follow. By establishing the right controls upfront, it may be possible to be more aware of how debt is acquired and lay out a step-by-step road map to address those problems. Documenting known intentional decisions at the time they are made will, at the least, provide useful guidance for future improvements. The scale and speed of doing so will ultimately depend on resources available, so it will be necessary to secure funding for such an effort. It may be a matter of working incrementally to make improvements over time, but the process will be more effective if it is part of a coherent long-term strategy.

Bottom line

Technical debt is an unfortunate reality and also a part of the hidden costs of IT. If ignored, it can cause real problems; but if it is identified, monitored, understood, and dealt with, it can lead to better software practices, lower cost of operations, and increased flexibility to address new opportunities.

It does not have to be tackled all at once, but good IT practices call for developing a systematic plan to deal with reducing accumulated debt and minimizing the creation of new debt. The opportunity is ripe to build a new, clean enterprise architecture, and leave old-world architectures, and legacy technical debt, behind.
Authors

Rick Clark, director, Deloitte Consulting LLP
Rick Clark is a client service competency director within Deloitte’s Technology practice. He’s a dynamic and seasoned leader with more than 29 years of experience supporting large-scale information technology projects focused on IT cost reduction.

Randy Covert, specialist leader, Deloitte Consulting LLP
Randy Covert is a leader in Deloitte’s Federal Technology practice specializing in solution architecture, design, development, and integration. He has 28 years of IT experience, working with major government agencies on their financial systems and tax and revenue management functions, both within the US and around the world.
Endnotes

Social activation
From passive to active tense

Over the years, the focus of social business has shifted from measuring volume to monitoring sentiment and, now, toward changing perceptions. In today’s recommendation economy, companies should focus on measuring the perception of their brand and then on changing how people feel, share, and evangelize. Companies can activate their audiences to drive their message outward—handing them an idea and getting them to advocate it in their own words to their own network.

Organizations have spent the last several years chasing the tantalizing prospect of “social.” Within the enterprise, social represents a bastion of hope for productivity and collaboration—a chance to effectively navigate who knows what, who knows whom, how work gets done, and how decisions get made. We’re still in the opening frames of a broad wave of social-driven enterprise transformation, as a recent study by MIT Sloan Management Review and Deloitte confirms. That study revealed that 69 percent of executives thought social business would be critical to their organizations in the next three years.

Social businesses ideally rally around well-defined business problems, supported by committed communities with well-defined incentives for participation. To take full advantage of this potential, age-old organizational constraints need to be identified and rewired. Hierarchies, biases, standardized operating procedures, rigid job descriptions, and other embodiments of institutional inertia can stunt progress.

Meanwhile, the flurry of activity around external social channels continues. Social media has become a frequent online destination, commanding 27 percent of global time spent on the web. Not surprisingly, social monitoring and listening were some of the earlier investments companies made in the social arena. Social efforts leaned on the enabling tools that allowed passive data collection, tracking the volume of surface-level activity and broad-stroke awareness—followers, likes, mentions, and click-throughs to their own corporate channels. As the numbers grew, premature victory was announced. But volume doesn’t tell you much—good, bad, or indifferent.

Monitoring gave way to sentiment analysis. Raw quantitative counts were replaced by happy and sad faces in an attempt to glean what the social masses were thinking about brands, products, services, and campaigns. Once again, out-of-the-box tools were often used to drive sentiment calculations, but they often lacked the nuance and context needed in business. The aggregated sentiment was a general measure of positivity, but it lacked subject-matter specificity. The sentiment camps ignored so-called “neutral” conversation—the lion’s share of dialogue and the place where opinions are formed through exploration and discussion. Sentiment analysis was difficult
to take action on, though the possibility nonetheless sparked a wave of investments in social command centers.

The thought process was that we need to do something, now that we’ve shone the light on what people are saying about us. So companies rolled out social-based customer service, communications, broadcast marketing, and crisis communications. These applications use social as another channel and are largely a means to distribute mass messaging or to pull customers back to a company’s own websites and call centers.

The business potential of social technologies is real. But that potential lies in moving from monitoring sentiment to influencing perception—and helping customers become advocates for marketing, for sales enablement, and for servicing.

The recommendation economy

Social activation is based on the new recommendation economy—where customers have tuned out anything that smells like traditional advertising, seeking instead the contextualized recommendations of peers. We have seen the rise of informed, passionate audiences who are ready to engage—willing co-creators who are actively sharing what they are interested in, buying, and using. They are participating in their own words, on their own turf, with personalized messages on social networks, blogs, community forums, and other locations where those with shared interests
congregate. They are inspired to share why they made a decision, what they considered along the way, and why others should follow suit. A recent Nielsen study confirmed that 84 percent of global respondents trust word-of-mouth recommendations from friends and family—the most highly rated among digital and traditional methods.⁵

Social activation involves new tactics. Audiences and influencers need to be understood at a granular level—who they are, what they care about, and how they spend their time. Then campaigns can be designed to empower and engage specific communities for tangible, expected results. Content should be rapidly created, tailored, monitored, and refined—according to the context of the audience, the outcome, and the campaign. It should be designed so that consumers feel motivated to add context to brand content with their individual insights for friends and readers. Content supply chains are often put in place, allowing core collateral to be pushed through internal and external ranks—in formats that encourage regional social teams and end consumers to localize, personalize, and enhance it.

Finally, digital outreach can—and should—be paired with traditional in-store or on-site campaigns, delivering on the potential of seamless, omni-channel digital engagement.⁶ The goal is not to divert social activity onto corporate assets; instead, it is to influence outcomes and promote advocacy.
Lessons from the front lines

The social TV experience

Recognizing that the Internet and social media have started changing the way people watch TV, the FOX Broadcasting Company identified an opportunity to both enrich the TV viewing experience of its existing fans and generate a new fan base through an engaging second screen experience using social media and the voices of its dedicated viewers.

FOX’s approach combines the live television viewing experience with a parallel online experience specifically designed for each show and the preferences of its audience. For one reality show, FOX let fans vote for the winner via Twitter. Another show uses social media for a “fan of the week” contest where individuals publicly share why they are a fan and winners are given “shout-outs” on-air during the broadcast. When FOX News started letting viewers agree or disagree in real time with speakers on one show, they saw its audience grow by 21 percent among a key demographic.

By designing separate social business strategies for each show and enabling viewers with compelling content, FOX has activated a large, online fan community that is driving the conversation and helping amplify its message to reach new viewers.

Unleashing the power of social

Four years ago, Hartz, one of the nation’s largest providers of pet products, was not engaged in social media. Recognizing the need to have a social presence to remain competitive in the marketplace, Hartz launched a multifaceted social media strategy designed to educate and foster relationships with pet enthusiasts.

The company listened to the online conversations of pet owners and developed content in response—having detailed conversations with owners and breaking down the company’s products for specific audiences such as small dog or short-haired cat owners. It conducted online contests and engaged industry influencers, largely bloggers, with relevant pet care topics and products to test. Hartz also used social media to educate pet owners on which pest control products were best suited for their companions through the interactive “Flea and Tick Education Center” on its Facebook page.

Hartz was able to tap into the widespread positive conversations about animals that were already happening in social media, positioning itself as an advocate for an existing online community passionate about pets and their overall well-being. As a result, Hartz has built an affinity between its brand and the “pet lifestyle,” creating stronger relationships with its customers.
Community outreach

Parallels, a desktop virtualization and hosting and cloud services enablement company, sells Parallels Desktop for Mac, which allows users to run Windows applications on a Mac® computer, side by side, without rebooting. Several years ago, Parallels faced competitive pressure and wanted to improve its online reputation. The company decided to engage with its customers across multiple social media channels and share the insights with its engineering and marketing teams to incorporate the customers' voice into its product.

The virtualization engine is complex software—running two or more operating systems on the same piece of hardware and making them act as if they are one. The product team had a roadmap for performance improvements and sophisticated new features, but the company launched a listening study to see what other ideas might come from social media followers. The study found that one out of three recommendations to buy a competitor’s product was based on its “prettiness.” By polishing the product—rounding the corners on message boxes, creating more natural translations of error messages originally written in another language, shifting the color palette of the menus and headers—Parallels had the opportunity to convert new customers. This was new feedback not previously shared in direct customer input or focus groups—but in the world of open purchase recommendations, the company was able to directly address the perceived gap in usability. Social activation helped reshape the company’s product roadmap and drive new revenue.

Parallels also created two separate programs to build its online reputation: an “influencers program,” in which a group of power users were encouraged to write content for a Parallels blog highlighting their own uses of the program; and the “advocates program,” which leveraged customers who were avid social media users and positive supporters of the product and brand to help increase positive sentiment via social channels. Both programs activated passionate users—giving them access to beta software and encouraging them to share their perspectives to shape future product releases.

A few years later, when an updated version of the software was two weeks away from being released, an employee of a big box retailer accidentally shelved it early, and a customer took a picture of the packaging exposing the product’s specifications, features, and marketing messaging. Parallels had planned massive media coverage announcing the product release, but it was scheduled to be launched two weeks later. The company decided instead to go to market with the product at the time of the leak solely with social media and public relations communications. Members of its influencer and advocate programs were core pillars of the roll-out. Due to the strong, engaged online community that Parallels had built, that online messaging alone drove sales of the new product equivalent to those of the previous year’s release.

The company’s realization of the importance of cultivating, appealing to, and rewarding a passionate community of customers transformed its brand. Especially with strong competition, customer perception can change quickly, and maintaining customer loyalty is fundamental to maintaining sales. Today, Parallels Desktop has 90 percent market share in Mac desktop virtualization software.
Social is the glue that holds together our IGN site experience. We’ve been a web property for over 16 years—before Facebook, YouTube, and Twitter. Facilitating a social experience between our users has consistently been at the core of what we do. We morphed from exclusively trying to pull visitors to our website to proactively pushing content to where gamers live through social channels like Facebook, Twitter, YouTube, and Google+. The crux of that strategy is our premium content delivered by recognizable online personalities, intended to resemble the person on the couch next to you playing a video game.

Opinion is the basis of our social interaction. But opinion can be a two-edged sword. People sometimes talk about games two years before their release, and it’s almost as if they’re “willing” games to be good. If highly anticipated games earn negative reviews, that generates heated conversation; for our users, it can sometimes be about satisfying expectations or justifying purchase decisions rather than about the game itself. The editorial team has to actively participate in discussions to make sure the audience doesn’t place blame on the messenger. The openness of voice we strive for can also be challenging for our relationship with the industry. But, we believe authenticity is at the core of engagement—especially via social channels. Game developer Peter Molyneux signed on our wall, “Thank you for all the reviews, both the good ones and the bad ones.” The bad reviews give him an added push to improve his upcoming products.

IGN went public right before the dot-com crash and started looking for alternate revenue streams. At that time, we had a vibrant community on our message boards, accounting for approximately 50 percent of our page views. Experimenting with how to monetize our users, we moved a large portion of that community behind a paywall. Though the short-term gain was beneficial, this ultimately stunted our growth and created a love-hate relationship with the most vocal segment of our user base. Shortly thereafter, we moved the paywall back and reintroduced free forums. Two years ago, we created the subscription service, Prime, which lets subscribers behind the “velvet rope”—an ad-free experience, free games, and access to our editorial team—without keeping other users out. The moment we pivoted, we saw the site’s growth return.

I recommend four steps for getting started with social channels. First, understand your baseline audience. We run an annual segmentation study to determine our audience. Second, identify, and activate, your social influencers. We labeled this segment our “All Stars.” We have someone dedicated to interface with them because, while they are influential enough to run their own blogs and cultivate their own Twitter followers, we also want them to keep using our tools and share our content. To this end, we provide rewards in the form of social currency, such as highlighting their commentary on IGN’s homepage. Third, execute on your plan. For example, facilitate giveaways and contests that encourage your audience to share comments and content. Lastly, appropriately measure your outreach—different content is appropriate for different social channels. Some channels are better suited for traffic referrals and others for starting conversations and getting the word out. Don’t get caught up in “vanity metrics” like how many followers you have. Focus on what matters: true engagement, quality content sharing, and commentary.

Peer Schneider, executive vice president and co-founder, IGN Entertainment

My take
Where do you start?

There are many beneficial social listening, sentiment, and analytics products on the market—and likely many already within your organization. But social activation shouldn’t start with tools. Instead, it should begin with well-defined business objectives and measurable, attributable metrics that can guide your efforts. Your objective may be to increase the number of leads or sales, boost your share of voice on a strategic topic, or reduce call volume to your call center.

Once the call to action is clear, the following areas of emphasis can help you fast-forward to social activation:

- **Focus.** Avoid the temptation to overload initial efforts across too many desired outcomes. There will be opportunities to extend the reach and effect of campaigns, but initially you should opt for focused results.

- **Insight.** Gain understanding about existing communities, channels, and content. Community insight involves understanding the various relevant constituencies within regions and groups, as well as the influencers and their relationships across the market. Channel intelligence measures the impact that programs make across various digital platforms and sites. Content reviews look to understand the health of social assets and how aligned they are to community and channel preferences.

- **Perception.** Perception involves uncovering what conversations are taking place, where they’re happening, and how people really think and feel about the company or product. Counting Facebook “likes” or how many tweets contained positive words such as “good” or “happy” only skim the surface. Instead, engage in a perception study and let today’s conversations inform how you, your competitors, and your partners are perceived. You will likely need to deal with negative perceptions, amplify positives, and design strategies to seed and grow your aspirational perceptions.

- **Audience.** Gather, monitor, and enlist targeted pockets within the community over time. Create plans to motivate and shape perceptions—including the build-out of content supply chains to manage, govern, and enhance digital content worldwide. Launch hyper-targeted ambassador or consumer VIP programs, fostering a community of passionate and connected users to help drive messaging, promotions, and—perhaps—even product innovation.

- **Campaigns.** Focus on the ideation, creation, execution, and monitoring of social experiences that engage audiences and shape perceptions. These may be tied to external events such as seasons and holidays, conference schedules, or industry milestones. Or they may be linked to internal happenings such as product launches, new content releases, or media events. Content, promotions, games, mobile applications, and microsites that harness the power of social media to achieve business objectives are possible tools. Either way, look to create natural links to e-commerce platforms—allowing activation to actually influence sales.
Bottom line

Effective social engagement is no longer about consumer loyalty to the brand; it’s about a company’s ability to nurture loyalty from the consumer. The goal is not just passive monitoring, but active influencing. In today’s recommendation economy, educating and empowering your audience can lead to impactful, long-lasting results. Social is neither a passive distraction nor a dangling modifier. It can drive real business performance through measurable, sustainable results. But it requires a shift in mindset—with a focus on perception, engagement, and activation.

Authors

Dave Hanley, principal, Deloitte Consulting LLP

Dave Hanley is one of the leaders of Deloitte Digital’s social offering. In his career as a web marketer, he has specialized in creating and marketing viral social applications. Hanley joined Deloitte Digital in October 2013 with the acquisition of Banyan Branch, a leading social media agency which he co-founded.

Alicia Hatch, principal, Deloitte Consulting LLP

Alicia Hatch is one of the leaders of Deloitte Digital’s social offering. She joined Deloitte Digital in October 2013 with the acquisition of Banyan Branch, a leading social media agency where she led new business for the firm, introduced new strategic offerings, and built a broad client portfolio of Fortune 500 brands.
Endnotes

9. Tech Trends is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple, Inc.
Social activation
A public sector perspective

For years, organizations have used social business to better connect, collaborate, and engage with stakeholders, constituents, and communities. Organization’s use of social has matured over recent years, moving from passively monitoring consumer loyalty and sentiment to actively influencing perceptions and nurturing loyalties so that audiences drive an organization’s messages outward. This shift to social activation is driven by today’s recommendation economy, where perceptions and influence are the main “currency.”

Can the public sector, too, effectively adapt new channels to influence and enable targeted groups to carry a focused message in their own words, to their own networks, on a whole new scale? Agencies can harness this potential if they view the technology simply as a facilitator of these new channels. They need to recognize that the power is in the enhanced network linkages, which are now more closely aligned, geographically dispersed, and laser focused on specific issues and interests.

What is different for the public sector

The public sector is, in general, still nascent in its use of social activation techniques. There are some public sector organizations measuring employee and public sentiment through social listening and monitoring. Consensus building, petitioning, and even political campaigns also have elements of social activation. Like consumer goods campaigns, elections market a “product” comprising ideals, platforms, values, and actions. Campaigns take place in defined time frames and have clear outcomes; a candidate is elected or defeated or a ballot measure is accepted or rejected. The strategic use of social media came to the forefront during the 2008 presidential race, when the Obama campaign’s use of digital tools to mobilize its supporters was widely credited as being critical to getting him elected.1

There are also examples of public sector organizations using social media to lobby on their own behalf in a positive way. For example, one day before Super Bowl XLVIII, National Aeronautics and Space Administration (NASA) tweeted a photo of MetLife Stadium taken from Earth Observer satellite to its 5.8 million followers,2 illustrating the scientific insights provided by NASA’s technology. Another tweet on the same day highlighted the agency’s contributions to the development of both the shock-absorbing foam used in football helmets and the communication satellites that enable the Super Bowl to be viewed around the world.3

By creatively capturing the drama and intrigue of space through social campaigns and hosting Google+ Hangouts with astronauts, NASA has garnered citizen support and loyalty. When the agency had to suspend tweeting during the 2013 government shutdown, citizens tweeted more than 8,000 messages on the agency’s behalf using the hashtag “#ThingsNASAMightTweet,” a clear example of citizens communicating an organization’s message in their own words to their own audiences.4 Other agencies may want to ask, “What could my constituents tweet about our value to the public?”

If government is the voice of the people, then social media can amplify that voice, adding variety and scale. Similar to their commercial counterparts, the public sector can leverage these channels to raise public awareness of their missions, measure brand perception, attract talent, and change how people share, engage with, and evangelize their values.
Agencies’ use of social media to interact directly with the public or other constituent groups might represent a marked departure from established channels of communications. For example, today the federal government seeks input into various regulations and laws through a formal public comment period, which is a highly structured process. This process is about feedback and transparency, and less about changing perceptions. The risk-adverse culture may cause some hesitation to use social media to help change perceptions. Social’s inherent public paper trail and its overall viral nature may be causing some concerns. Generally, the public sector is more focused on centers of influence, and less concerned about changing perceptions or influencing at a granular (individual) level like the private sector. These barriers may push adoption of social media, and hence social activation at scale, farther out.

Lessons from the front lines

- **Understand who is participating in the conversation.** In order to pursue a social activation strategy, it is prudent to understand who the audience is—and who the specific influencers are—at a more granular level. For social activation pursuits to be effective, content needs to be tailored, responses monitored, and messages refined. For years, public sector organizations have been communicating en masse with the public through press releases, newsletters, and press conferences. Today, social media tools create opportunities to convey information and to actively engage with specific groups or spheres of influence. Taking advantage of these new channels involves new tactics and a new way of thinking about audiences.
• **Social activation is a two-way conversation.** An effective activation strategy is not about a one-way dissemination of information through new channels; it is about creating an ongoing two-way dialog. A social activation strategy can be particularly useful for agencies concerned about their reputations and brands. For example, the Transportation Security Administration (TSA) has experienced mixed reactions from citizens concerning what some consider being intrusive and disruptive screening procedures. In July 2013, TSA decided to experiment with social media to demonstrate how effectively the agency protects air travelers. It posted photos of loaded guns and other dangerous items it had confiscated at its airport checkpoints. Within a week of posting just 11 pictures on Instagram, TSA had attracted more than 28,000 followers and had begun to generate more favorable media coverage.5

Overall, social activation can be a powerful tool to elevate a brand and to drive public or investor support for a cause. Agencies seeking to boost support for their missions—and ultimately direct or indirect funding support—should consider providing their messages to select influencers, who can, in turn, amplify that support through their networks.

• **Identify goals and track success.** Social activation campaigns need to be carefully targeted to specific goals. Public sector agencies should determine what they want the outcomes to be, identify target audiences, and then measure effectiveness. Metrics can help to document the value of social activation initiatives. NASA makes use of several metrics to measure the effectiveness of its efforts, including:6
 - Overall account growth
 - Quantity of mentions in social media
 - Number of “engaged” users (people producing mentions)

Getting started

• **Form a strategy, and identify a specific problem that needs to be addressed.** Like TSA’s challenge of better communicating the mission that it performs, start with a defined vision. Organizations should ask, “Where is there opportunity for the public to be mobilized in a positive way?” For example, after the Boston Marathon bombing in 2013, city officials created a hashtag, #OneBoston, that was used to provide updates to citizens on fast-breaking developments, including a program to reconnect runners with possessions left at the finish line after the race was disrupted. The hashtag was visible at the top of Twitter’s “trending topics” list, which helped to communicate a sense of the community’s resilience and provided a venue for victims and supporters to share their messages of strength and survival.7

• **Target specific audiences.** Social activation campaigns do not need to be aimed at the general public. They can be used to activate specific groups of constituents or supporters for a specific policy or bill, and they can be used to change the perception of a target group. For example, if an agency’s goal is to recruit talent, it should consider what—and how—to communicate in order to connect with that market—its commitment to innovation, perhaps, or its focus on humanitarian efforts.

One early way for public sector organizations to compete for talent is to recognize that employees, especially younger generations, use social tools outside of work, and they want those tools to be available to help them do their jobs better. To help engage this participation generation, agencies can offer...
employees the opportunity to participate in reinventing the organization’s brand, messages, and reach by leveraging social activation to change the way they engage and stimulate each audience.

- **Listen and respond to feedback.** Once an audience is engaged, be prepared to engage in a two-way conversation. The U.S. Geological Survey (USGS) demonstrated how to do this when a small earthquake occurred in the San Francisco Bay Area during the federal government shutdown, which meant that the agency did not post its usual report on the seismic event. When USGS saw that it was being criticized on Twitter for its failure to provide information, however, the agency’s site was quickly updated with information about the magnitude and location of the quake.8

- **Learn as you go.** Pursuing social activation in the public sector involves exploring largely uncharted territory. As more citizens become more digitally engaged (See: Digital Engagement9), it is likely they will increasingly expect their governments to communicate with them through social channels, just as they now expect this of commercial entities. Setting up social listening posts, such as Boston’s Citizen Connect app (where citizens can report suspicious activity and identify issues including potholes and graffiti) and TSA’s listening practices through social tools like Twitter are good first steps.

Bottom line

The public sector may be following the commercial world in pursuing social activation, but it should not fall too far behind. Social media comprise another set of tools and channels that can help agencies attract new talent and more effectively deliver and communicate the value of their missions. There are already success stories to provide guidelines about how to start—as well as cautionary tales about what not to do. Understanding the circumstances of specific groups and their spheres of influence is important to activating them to perpetuate a public sector message, in their words, to their networks. Every public sector entity may not need to plunge in now, but it is time to begin paying attention.

In today’s recommendation economy, educating and empowering public sector constituents and influencers can lead to impactful, long-lasting results. Social activation can drive real mission performance through measurable, sustainable results; however, it requires a shift in mind-set—with a focus on perception, engagement, and now activation. In the long run, social activation may be among the most powerful and transformative communications tools available to the public sector.
Authors

Robert Capuano, director, Deloitte Consulting LLP
Bob Capuano is a leader in Deloitte’s National Security practice and the leader of Deloitte’s Federal Customer Solutions service line. He is a respected strategic advisor and proven delivery manager of Customer Relationship Management (CRM) offerings across both the private and public sectors.

Tony Demarinis, director, Deloitte Consulting LLP
Tony Demarinis is a leader in Deloitte’s Federal Human Capital practice with more than 19 years of experience in learning, learning technology and human performance disciplines. His area of focus is in learning strategies and the design and development of technology solutions that drive instructional outcomes.

Steve Lunceford, specialist leader, Deloitte Consulting LLP
An award-winning digital marketing consultant, Steve Lunceford helps provide social business solutions to Deloitte clients in both the commercial and public sectors. He has 20 years’ experience in marketing, media relations and strategic communications, working for a handful of Fortune 500 companies.
Endnotes

Cloud adoption across the enterprise is a growing reality, but much of the usage is in addition to on-premises systems—not in replacement. As cloud services continue to expand, companies are increasingly connecting cloud-to-cloud and cloud-to-core systems—in strings, clusters, storms, and more—cobbling together discrete services for an end-to-end business process. Tactical adoption of cloud is giving way to the need for a coordinated, orchestrated strategy—and for a new class of cloud offerings built around business outcomes.

All together now

Integration, data management, and enterprise architecture have long been aspirations for IT. With cloud, these practices have become more complex. And they’ve shifted from leading practices to critical core disciplines. Integration stability and reliability was the number two challenge in a recent survey on cloud adoption, trailing only security concerns. Virtual every enterprise should be developing a strategy on how to integrate, aggregate, and orchestrate its collection of cloud and on-premises assets. Understanding the extensibility, portability, and reliability of a cloud service should begin at the sourcing stage.

- Extensibility refers to the ability to get information into and out of the service—the availability of data and transactions to be invoked by other parties and the ability to trigger external events from within the cloud service. Many cloud providers offer lightweight web services and RESTful interfaces, but it’s important to review the assets around APIs and data structures—documentation, toolkits, testing harnesses, backward compatibility, and deprecation policies.
• Portability represents the ease of migrating your business from the cloud service. Can data be exported? What about customized business logic? Are there contractual terms associated with intellectual property ownership?

• Reliability addresses performance of the service—not just the core cloud offering, but the surrounding stack. For an orchestrated process, the integration layer and dependencies on legacy systems should be able to scale dynamically to take advantage of the elasticity of cloud services. The end-to-end business process is only as strong as its weakest link.

Cloud orchestration can build from a mature enterprise integration and architecture footprint. The underlying tenets are familiar: service orientation, data correlation, security services (especially authentication, entitlement management, and encryption), and a separation of business logic. Several integration platforms have emerged from the cloud, offering cloud-based deployment options as well as preconfigured connectors and integration patterns for popular cloud services. Providers include Boomi, CastIron, MuleSoft, and TIBCO's Cloud Bus.

New beginnings

The cloud provider market is starting to address the desire for higher-level, pre-integrated cloud orchestration services. For example, consider the example of a health plan’s recruiting and HR service. Today, health plans contract with separate cloud providers for résumé sourcing, background checks, on-boarding, benefits, payroll, and performance management—which means they need to develop and maintain point-to-point interfaces between the various players to enable the full prospect-to-employee lifecycle. They are waiting for an end-to-end “hire to retire” service to emerge, which could provide contracting, configuration, and handoffs across various systems. The enterprise could subscribe to a single service, priced based on usage or, in an ideal world, on outcomes.

Traditional ERP players are acquiring and integrating cloud applications to supplement core offerings. Established cloud providers are
creating storefronts of complementary cloud solutions, which make choosing and buying an expanding inventory of services easier. But we are still in the early days of this expansion, and integration often remains the buyer’s problem. Over time, technical compatibility within a vendor’s stack should become less challenging. ERP and cloud providers are also planning improved interoperability between their products—an encouraging development, to be sure, but of little help in the immediate term.

Others may yet enter the cloud orchestration market. Systems integrators and professional services firms that specialize in integrating diverse systems could expand and formalize their roles by pre-integrating the components of an end-to-end bundle. For such organizations, this may offer a way to monetize intellectual property around industry and process experience while diversifying from consulting to a product revenue stream. Several high-tech players looking to expand their offerings could emerge, such as Amazon, Google, HP, and Microsoft.

A brave new world

The initial market for effective cloud orchestration is likely to be startups and small- to medium-sized businesses. They could receive the benefits of one-stop access without the hassle of navigating vendor contracts, integrating systems, and managing data. Larger businesses in emerging markets are also natural targets. Like startups, their circumstances may not justify a full enterprise solution. Finally, serial acquirers could gain agility and advantage from being able to integrate diverse platforms more efficiently. In each case, IT’s mission should be to create integration, data management, and security services to guide cloud adoption.

But the majority of the Fortune 1000 will be living with the reality of a mix of cloud and core offerings, even as sophisticated cloud orchestration emerges. IT’s charter to own cloud integration, data, and security is even more important in this case—especially as businesses are increasingly dependent on hybrid operating environments. Build the components to orchestrate the cloud today, and you’ll be ready to adopt more compelling services as the market develops.
Lessons from the front lines

Linking the network

LinkedIn, a social networking website, has three main enterprise lines of business: talent solutions, marketing solutions, and sales solutions. As Andres Bang, LinkedIn’s head of global sales and operations systems, described recently: The company adopted cloud services to support sales and CRM functions, but found that its business was outgrowing standard out-of-the-box capabilities and that its processes increasingly required integration to ERP and proprietary systems for generating sales leads.

To address its immediate lead-to-cash process requirements, and to build a scalable solution for future orchestration, LinkedIn adopted a cloud-based integration platform. Bang explains that by using the integration platform, LinkedIn was able to connect multiple systems, including its lead generation tool, CRM system, financial system, data warehouse, and proprietary applications. Integrating both its cloud-based and on-premises systems created a “single pane of glass” for the company’s salespeople to access the information they need to perform their jobs.

Orchestrated banking

SunTrust Banks, a leading US financial services holding company, found that its relationship managers were encountering issues with accessing customer information in a timely manner, threatening their ability to provide quality customer service. The root of the issue was the company’s reliance on an assortment of back-end systems for loan origination, underwriting, servicing, and CRM. SunTrust’s architecture was a mix of cloud services, on-premises packaged software, and on-premises custom solutions. The company sought an integrated, scalable solution to expedite the delivery of services to customers—and pave the way for future cloud adoption.

The bank decided to adopt a cloud-based integration platform to address these challenges. By connecting SunTrust’s back-end enterprise application and shared services to the cloud, SunTrust was able to eliminate its complex back-end business processes. Furthermore, the cloud enabled seamless integration with the bank’s enterprise service bus and provided preconfigured connectors to cloud services.

Today, SunTrust maintains a scalable solution supporting its broader business process transformation. Furthermore, relationship managers are empowered with the tools and resources to access important customer information in a timely manner, reducing the time it takes to provide service to customers.
Hybrid high tech

A global hardware and software company was undergoing rapid change stemming from acquisitions, organic growth, and divestitures. The company’s goal? To maintain its core hardware and product businesses while expanding its software and services offerings. The company’s expansion introduced complexity in many areas, such as marketing, sales and incentive management, product configuration, pricing, and project and workflow management. Speed to market was a driving force, since the organization wanted to engage with customers from dozens of countries in a consistent and coordinated manner. The company also recognized that its strategy was built around continual transformation of its offerings—and that required flexibility and agility in the enabling systems.

The organization was vexed by decades of what it called “lumpy” expenditures—costly IT infrastructure refresh cycles, with a history of overspending for capacity because of unpredictable demand. But the concern was about more than cost and scale. The company also sought shorter time to market and the ability to more efficiently assimilate new ventures. This was important, given its recent wave of acquisitions.

The company’s vision is to move to a 100 percent cloud-based infrastructure for the enterprise. As a first step in fulfilling this vision, and to continue to provide seamless, end-to-end business processes, the organization orchestrated a complex integration between multiple cloud services and its on-premises systems. A new sale requires smooth interaction between separate cloud systems for many processes: calendaring and messaging; materials development; lead and campaign management; opportunity, sales, and support management; configuration, pricing, and quoting services; sales and support management; and compensation and incentives. The integration enabled these systems to communicate with each other, and it also included hooks into on-premises systems for human resources and order and billing management. Recognizing that the glue to bring together the various services was as important as the individual functionality being delivered, the company created disciplines around cloud-to-cloud and cloud-to-core integration: tools, architectural standards, and a dedicated team to drive growth and adoption.

Through the company’s efforts, maintenance costs have gone down: Instead of heavily funding incremental software improvements, the company is taking advantage of enhancements being rolled out by the cloud services. System performance has improved; outages have become shorter and less frequent. The company’s global teams have enjoyed greater browser and device compatibility, as the cloud offerings have a wider footprint than was historically allowed. And the business feels better served by IT: IT’s responsiveness has improved, as has the business’s understanding of associated costs. Finally, the company has started to take the next step toward the overall vision by shifting to cloud hosting of traditional ERP to “rightsize” the underlying infrastructure—a solution that can scale up (or down) based on the company’s circumstances.
Espresso with a shot of cloud

Online distribution channels have transformed Nestlé Nespresso S. A. from a traditional, coffee-shop-and-boutique-store business model to a household brand in the single-serving coffee machine category. But in order to meet growing global customer demand, Nespresso needed to replace its home-grown, complex ERP system with a more scalable architecture and integrated cloud solution.

The business began enhancing its enterprise architecture by launching the Nespresso Open Architecture (NesOA) platform, a tool designed from service-oriented architecture (SOA) principles. With NesOA, Nespresso’s IT department could support new distribution channels, manage increased consumer traffic, and introduce new applications and services to the business. Furthermore, by using a cloud-based integration platform, Nespresso could easily integrate a variety of systems, including the Nessoft ERP system, an interactive voice response system, an automated warehouse management system, and an emergency ordering tool.

As a result, Nespresso’s NesOA transformed its home-grown enterprise into a scalable, automated, and more efficient solution to meet business needs. Furthermore, it mitigated the risk of disruption from a single point of failure with a solution based on clustering and redundancies. Nespresso is now poised to leverage cloud and traditional solution offerings to support future growth of its IT system landscape.
I formerly worked for a regional bank that generated the majority of its revenue from mortgage banking. The bank looked to diversify by focusing on both the retail and commercial banking lines of business. We recognized that we could drive immediate revenue in retail by elevating the customer experience at the point of sale. The longer-term goal was an integrated omnichannel experience driven by online and mobile capabilities, but initially the case for change was to better serve our customers in the branch—knowing that the technology we implemented could provide a solid foundation for our “connected customer” vision.

Previously, the process for opening an account with related services was lengthy and inefficient. Employees accessed multiple systems and entered duplicative data. In addition, we didn’t provide bankers with tools or insight to identify customer needs, and we lacked an automated way to manage the ongoing customer relationship. To improve the experience for both the customer and banker, and with an eye toward the broader vision, we invested in a customizable cloud solution with native customer relationship management (CRM) capabilities. It provided one delivery system for branch bankers with increased flexibility, support for process improvement, and the option for future expansion across channels.

We chose to go to the cloud for several reasons: to generate revenue, to increase efficiency, to be agile enough to respond to changes in the marketplace, and to differentiate ourselves from our competitors—while reducing the burden on the IT organization. Cost factored into, but didn’t dominate, the investment decision.

Our legacy systems didn’t provide the functionality needed to solve the business problem, so we used the cloud and SaaS to connect multiple core and ancillary systems. Integration isn’t a new concept, but with the cloud, a balance has to be struck between traditional methodologies and the flexibility that the cloud can introduce. Looking back, there are a few things we might have done differently, such as creating more real-time APIs versus batched transfers. But, overall, the project laid the groundwork for the longer journey.

During the course of the project, and especially after go live, the cloud changed how IT and the business work together. It drove collaboration and created a new team with an enhanced skill set and a different mindset. They’re no longer completing a stand-alone project and moving on, but dedicated to driving continuous improvement and evolving the platform to deliver business results.

As you take the cloud integration journey, executive sponsorship and building enterprise support are key success factors. Create a strategic roadmap, and articulate your plans two to three years out. Upon completing the first phase, showcase the solution and use the roadmap to sell the vision to the C-Suite and across business lines. Provide regular updates on adoption metrics, user feedback, progress toward change, and—more importantly—return on investment. This keeps the platform top of mind and makes it easier to gain support to grow the platform and enhance its value.

As business leaders, we look for ways to drive revenue and efficiency, continuously creating value. At the heart of the banking business is the relationship we have with our customers, and building trust is the foundation of that relationship. What I love about this technology is that we used it to remove compliance and operational obstacles and gave bankers the tools they need to be effective and efficient. We used technology to enable bankers to be present, listen, ask questions, and help people—to make a stronger human connection.

My take

Dounia Lievan, former banking executive

Director, Deloitte Consulting LLP

Cloud orchestration
Where do you start?

EVEN with the more sophisticated cloud offerings that span end-to-end processes, the challenge of integrating cloud-to-core remains. How does the CIO manage the definition of standards for cloud adoption? Establish architecture to support integration? Handle data correlation, retention, and migration? These are important questions to answer now—and they’ll be even more important as cloud services spread across the enterprise. CIOs should be making deliberate investments in developing advanced integration and data management capabilities to support a cloud-to-cloud-to-core model.

- **Petition for a new cloud business model.** Many companies could save money if cloud pricing was based on usage and outcomes rather than licensing fees. If this is true for your organization, let the cloud providers know. And if your company is ready for an orchestrated cloud option now, connect with others who share your need. Let your voices be heard by the software vendor community.

- **Build an integration foundation.** Even if your organization doesn’t operate in a cloud-to-core environment, it’s likely you eventually will. Laying the groundwork now will make integration easier later. If you’ve already invested in middleware to link legacy systems, build from there. However, you may find that a cloud-based model requires new approaches.

- **Connect the dots.** Definitions of customer, product, employee, and other data elements vary from one cloud solution to another—and need to be mapped to your business’s semantics and taxonomy. Understand how each application defines its dataset, and develop a strategy for funneling data from various cloud systems to support your organization’s reporting and analytic objectives.

- **Read the fine print.** Develop a healthy skepticism of cloud provider contracts. Understand your rights to data ownership, portability, and migration. If you change providers, can you be confident that your data is protected? Negotiate terms where possible to maintain your flexibility.

- **Build a strong chain.** Overall business performance is limited by the weakest cloud solution in the process chain. Understand the performance variability your business will tolerate, and weigh whether each individual cloud service can meet those demands. And remember: The scalability and performance of the interconnected whole is only as strong as its weakest link. Cloud’s elasticity could stress (and break) legacy solutions built around more modest, predictable requirements. Cloud-based integration platforms ramp up (or down) to meet your needs—similar to the cloud offerings you are looking to orchestrate.

- **Explore edge architecture.** Borrowing from the days of SOA, consider describing business capabilities and processes as services. The goal is to connect enterprise core, private, and public cloud offerings—which can be broken into a common set of services used to deliver on business needs. This will lead to deliberate identification and management of business rules, APIs, identities and personas, entitlements, workflow items, and interfaces. The goal is to promote reuse, standards adoption, and architectural integrity—from a business-driven mindset. A revamped IT delivery model will likely be needed, as will support from both IT and business executives for a new governance mindset.
Bottom line

As enterprises use disparate cloud offerings to handle critical business processes, the desire to link these offerings to core legacy systems and data grows. IT organizations will be asked to provide that orchestration. A recent Gartner survey shows that “over 70 percent of organizations that are using or planning to use cloud services expect internal IT organizations to assume the role of cloud services broker.” That need has generated challenges that extend beyond integration to include security, data integrity and reliability, and business rules for managing a hybrid state. It is also creating demand for cloud orchestration to link multiple cloud services to each other—and to the core. CIOs who have the disciplines of data management and integration architecture in place will be positioned to create harmony out of the existing landscape and to leverage orchestration services when they arrive.

Authors

Andy Main, principal, Deloitte Consulting LLP

Andy Main is Deloitte's National Customer Solutions service line leader and the Global Customer Solutions leader. In his national leadership role, Main is charting new courses in cloud computing, providing clients with more flexibility than before.

John Peto, principal, Deloitte Consulting LLP

As the US lead for the salesforce.com global alliance and a leader in Deloitte Consulting LLP’s Customer Solutions practice, John Peto focuses on helping companies transform the effectiveness of their sales, service, and marketing functions through the implementation of new processes and supporting application, integration, and data architectures.
Endnotes

2. Ibid.

Cloud adoption continues to gain momentum, with the potential to provide organizations with cost savings, access to new capabilities, and the ability to refocus on core business and mission outcomes even as resource and budget constraints persist. Cloud has the ability to be a unifying force, enabling collaboration and the congregation of multiple data sets and new information technology (IT) services—on a never seen before scale and pace.

Early cloud adopters were seeking new or augmented capabilities in addition to outsourcing common tools such as email, Web, and collaboration. For many clients, the maturity of the market and economics to re-host such services has been sufficient to encourage the switch. However, CIOs are learning that enhanced IT disciplines and core IT services may be needed to enable true IT integration as the pace and breadth of cloud services adoption continue to accelerate.

There are limits to the value that can be derived from one-off implementations of cloud-based capabilities. They can improve efficiency and agility, but they are unlikely to be true game changers. That is what orchestration is about—linking cloud capabilities directly to core operations to yield transformative benefits.

CIOs are recognizing that now is the time to evaluate their core supporting infrastructure—including tools, processes, and practices—and enhance them because their users are eager to embrace cloud. Preparing core IT services to enable users (and IT) to string together discrete services and complex capabilities in an orchestrated, coordinated fashion is needed to allow organizations to adopt cloud efficiently, repeatedly, and at scale.

What is different for the public sector

Cloud is already a big topic in the public sector, and it is getting bigger. In 2011, then-Federal CIO Vivek Kundra estimated that as much as one-quarter of the federal government’s total IT spend—$20 billion of a total of $80 billion annually—could potentially be shifted to the cloud.¹ Based upon agencies’ efforts across various cloud service levels and large BPAs underway, cloud may become a core delivery model of IT by 2020. Indeed, the movement to operating in the cloud has been gaining momentum since the White House launched the Federal Cloud Computing Strategy in 2011.²

Public sector organizations have the potential to redefine their roadmaps using cloud-powered cyber analytics to enable a mobile workforce, and deliver the foundation for cross-agency data orchestration. CIOs need to balance these demands and align programs with similar purpose—at scale and assisted by cloud and its associated provisioning automation. Ultimately, the focus is the process of strategically orchestrating cloud resources in order to link them directly into an organization’s core functions.

A number of agencies have begun to move toward cloud-based operations. A few states have also taken steps toward cloud adoption by creating cloud procurement vehicles. Additionally, some public-sector entities are seeking new platforms or more comprehensive Software-as-a-Service (SaaS) capabilities to transform their missions.

In 2013, the Department of the Interior (DOI) made a major commitment to cloud by awarding a set of indefinite delivery/indefinite quantity (IDIQ) contracts with a total value
of up to $10 billion for cloud services. In addition to application hosting, cloud services for DOI will include virtual machines, storage, database hosting, file transfers, and development and test environments—offering a “one-stop shop” vehicle. In announcing the awards, Bernie Mazer, the Department’s CIO and Federal CIO Council’s co-chairman for the Federal Data Center Consolidation Task Force, stated that he expected its migration to the cloud will allow Interior “to begin the process of closing or consolidating potentially hundreds of DOI data centers currently in use.”

Looking forward to the bigger potential, the nexus of orchestration is to leverage the cloud model at scale, to deliver on and enhance open data sharing, and to enable the mobile workforce. According to Mazer, “the ultimate milestone is to enable cross-agency data orchestration such that two separate, well-defined data sets are shared and combined to enable scientists to find new things.”

As public agencies gain experience with cloud, they are preparing to move toward the next stage in its use: cloud orchestration. Cloud orchestration means moving cloud from a tactical consideration in narrowly defined applications to a coordinated strategy built around supporting important business functions. It also represents a shift from addressing peripheral, noncritical functions to becoming an integrated component of core operations. The ultimate goal of this evolution is to see “cloud as a fabric”—a single, pervasive, highly flexible service that can be accessed as needed across an agency (or even across multiple agencies).

Moving traditional IT operations to a cloud-based strategy poses a number of challenges, especially in the public sector. First is still security; however, CIOs are starting to lay the foundation for the future of IT, addressing foundational gaps needed to enable cloud orchestration. Maintaining data privacy and security is an inviolate mandate for virtually all public sector IT operations. Private sector companies typically approach the possibility of unauthorized data or information disclosure as part of a risk management strategy that involves a cost-benefit analysis to determine the appropriate level of security. But this kind of calculation makes less sense in the public sector, where compliance-based accreditation decisions initially dominate the discussions. For that reason, the idea of putting sensitive or critical applications and data in a remote cloud—and especially a cloud that is a shared, commonly available resource—is likely to make a public sector CIO and mission team proceed with caution.

Beyond security, moving toward true cloud orchestration will involve significant changes in how IT services are planned, acquired, and funded. One potential benefit of cloud orchestration is the ability to make use of enterprise ready, well integrated shared capabilities that can be accessed on an as-needed basis. Being able to benefit from this flexibility will mean moving the traditional public sector contracting and acquisitions process to much shorter cycles.

Finally, taking full advantage of cloud orchestration’s benefits will require IT leaders to shift from providing specific applications to supporting business capabilities. While this shift offers an opportunity to upgrade the role of IT, it also means examining what that role is and how it supports the larger mission of an agency.

Lessons from the front lines

• **It is about services.** The conversation around cloud is no longer about gaining access to specific capabilities; it is about “x as a service,” where ‘x’ may be data, mission-centric software, infrastructure, or platform. The big discussions are no longer focused around portability or automation at the workload level but rather about the availability and interoperability of services. Even private clouds are turning into service centers. As cloud capabilities and “as-a-service” adoption continue to grow, and
multi-cloud services come to fruition, cloud orchestration should become a core tenet.

- **It is about sharing, not just shifting workload.** There are important benefits to be gained by sharing data if the barriers to doing so can be overcome. There are limits to how much efficiency can be gained by one agency on its own; greater gains are possible when resources are shared effectively. Cloud brokering that is based on a shared catalog of vendors is proving to be a good way to lower transaction costs and improve the quality of decision making around acquiring resources at the same time. For agencies whose mission includes serving customers—either within government or externally—a cloud brokering strategy can enhance the process of sharing of resources.

- **It is about creating new value.** If the first stage in moving to the cloud involves bringing disparate systems together to yield greater efficiency, cloud orchestration is about actually creating new value by delivering capabilities that were not previously possible. The eventual goal is seamlessly combining previously discrete services into systems that can uniquely meet the needs of the mission. For example, it may become possible to pull together large amounts of data from disparate sources to identify problems (such as fraud) or to spot opportunities (like deriving greater benefit from existing assets).

- **It is about orchestration.** Initially it may make sense to use “pre-orchestrated” cloud delivered apps created by vendors that meet an entire suite of needs (e.g. personnel management from recruitment to hiring and onboarding to ongoing training and support); however, the demand for orchestration is being led by users looking to combine services into more robust capabilities that meet their specific needs. Orchestration can be the key or core enabler of IT and business transformation, with mission systems requests for connected services (more than back-office functions) leading the orchestration call. Certain public sector IT organizations are starting to act and plan now to drive transformation within the core of IT, to enable future workflows. They recognize that the core architecture will require formal and API-supported end-to-end, secure integrations to deliver on the new analytics, mission capabilities, and workflows on the horizon, as cloud continues to move towards the core of IT’s delivery portfolio.

Getting started

- **Work with others.** A good first step toward orchestration is collaborating with partners or engaging with a cloud brokerage service that can review and evaluate existing options, create a list of approved vendors, provide assistance in negotiating and managing cloud contracts, and monitor vendor performance. For example, the General Services Administration (GSA) has been working with the National Aeronautics and Space Administration (NASA) and the departments of Homeland Security, Health and Human Services, Labor, and Justice to explore establishing a cloud broker for civilian agencies. It is also collaborating on a similar project with the Department of Defense.\(^6\)

DOI’s Mazer has been investigating cloud options on behalf of many agencies and locations within the department, with the goal of simplifying the process of getting educated about choices, selecting a vendor, and carrying out cloud-based projects. One goal of this effort is to identify services that can be shared within the department, and possibly across multiple departments, by moving them to the cloud.

In Texas, the state’s Department of Information Resources (DIR) organized
a pilot project that allowed a number of state departments to “gain a deeper understanding of all facets of cloud-based offerings within the public-sector context.” The Texas DIR worked with a private cloud broker to guide selection of a virtual private cloud-based infrastructure as a service and to “design, procure, provision, monitor and govern” the service. At the end of the process, the Texas DIR published a report summarizing the lessons learned from the pilot to help others get started.

- **Ask the right questions.** According to Mazer, agencies considering cloud orchestration or brokering should ask the following questions upfront:
 - Security—Are the security implications and requirements adequately covered by the Federal Risk and Authorization Management Program (FedRAMP), or do new, agency-specific requirements need to be developed?
 - Governance—What is needed to create a repeatable model that ensures the organization’s goals are being met?
 - Communications and outreach—What do people across the organization need to know to operate successfully in the cloud? Communications is an ongoing process.
 - Acquisition management—What requirements are needed to minimize risk? What documentation is needed to ensure these requirements?

- **Create a roadmap.** The cloud is likely to be a big part of the IT future of many agencies, but it will not happen all at once. It is likely to begin with discrete applications and then to expand to multiple applications. As described here, the real payoff will come through orchestrating cloud services and tying them into an agency’s core functions. It helps greatly to have a roadmap that describes the steps in the journey, provides a sense of timing, identifies the resources that will be needed to get there, and establishes an appropriate governance model.

Bottom line

Many government agencies have started actively exploring cloud options and have begun the process of requesting and moving more functions to a cloud-based delivery model. The next frontier, which has already appeared on the horizon, is the process of strategically orchestrating cloud resources in order to link them directly into core functions. Ultimately, this can enable a new level of reach and responsiveness for the enterprise and create opportunities for public sector organizations to share and leverage data.
Authors

Gregg “Skip” Bailey, director, Deloitte Consulting LLP
Dr. Bailey is the Federal Competency Director and Federal representative for Cloud computing within Deloitte Consulting LLP’s Federal technology practice. He is also a former Federal CIO with a host of knowledge on change management, data center consolidation and operations, network design and deployment, and IT services management.

Paul Krein, specialist leader, Deloitte Consulting LLP
Paul Krein is a seasoned technology and business advisor in Deloitte’s Federal Office of the CTO with a focus on Cloud business models and transformation, the Postdigital Enterprise, and business trends in technology. He advises clients around innovation, the business impacts of technology, and the role of the CIO.

Endnotes

2. Ibid.
4. Ibid.
DATA is exploding in size—with incredible volumes of varying forms and structure—and coming from inside and outside of your company’s walls. No matter what the application—on-premises or cloud, package or custom, transactional or analytical—data is at its core. Any foundational change in how data is stored, processed, and put to use is a big deal. Welcome to the in-memory revolution.

With in-memory, companies can crunch massive amounts of data, in real time, to improve relationships with their customers—to generate add-on sales and to price based on demand. And it goes beyond customers: The marketing team wants real-time modeling of changes to sales campaigns. Operations wants to adjust fulfillment and supply chain priorities on the fly. Internal audit wants real-time fraud and threat detection. Human resources wants to continuously understand employee retention risks. And there will likely be a lot more as we learn how lightning-fast data analysis can change how we operate.

An evolution of data’s backbone

Traditionally, data has been stored on spinning discs—magnetic, optical, electronic, or other media—well suited for structured, largely homogeneous information requiring ACID1 transaction processing. In-memory technologies are changing that core architecture—replacing spinning discs with random access memory (RAM) and fueling a shift from row-based to column-based data storage. By removing the overhead of disc I/O, performance can be immediately enhanced. Vendor claims vary from thousand-fold improvement in query response times2 to transaction processing speed increases of 20,000 times.3 Beyond delivering raw speed, in-memory responses are also more predictable, able to handle large volumes and a mix of structured, semi-structured, and unstructured data. Column-based storage allows for massive amounts of data of varying structures to be promptly manipulated, preventing redundant data elements from being stored.

While the concept of in-memory is decades old, the falling price of RAM and growing use cases have led to a new focus on the technology. CIOs can reduce total cost of ownership because the shift from physical to logical reduces the hardware footprint, allowing more than 40 times the data to be stored in the same finite space. That means racks and spindles can be retired, data center costs can be reduced, and energy use can be slashed by up to 80 percent.4 Operating costs
can also be cut both by reducing maintenance needs and by streamlining the performance of employees using the technology. In addition, cloud options provide the possibility of pivoting from fixed to variable expenses. The bigger story, though, is how in-memory technology shakes up business processes.

Beyond the technology

CIOs should short-circuit market hype and determine which areas of their business can take advantage of in-memory technology. In last year’s *Tech Trends* report, our “Reinventing the ERP Engine” chapter asked a specific question: What would you do differently if you could close your books in seven seconds instead of seven days? Today, with advances in in-memory technology, that “what if” has become a reality that is driving companies to consider both the costs of ERP upgrades and the breakthrough benefits of real-time operations.

Operational reporting and data warehousing are easy targets for in-memory, especially those with large (billion-plus-record) datasets, complex joins, ad hoc querying needs, and predictive analytics. Core processes with long batch windows are also strong candidates: planning and optimization jobs for pricing and promotions, material requirements planning (MRP), and sales forecasting. The sweet spot is where massive amounts of data, complex operations, and business challenges demanding...
real-time support collide. Functions where the availability of instantaneous information can improve decision quality—telecommunications, network management, point-of-sale solutions—are good candidates for an in-memory solution. Over the next 24 months, some of the more important conversations you’ll have will likely be about in-memory technologies.

Not every workload will be affected equally, and the transition period will see a hearty mix of old and new technologies. We’re still in the early stages of businesses rewiring their processes to take advantage of the new engine. Analytics will continue to see the lion’s share of investment, with in-memory–fueled insights layered on top of existing legacy processes. Point technical upgrades will offer incremental benefits without the complexity of another round of process transformation. And ERP vendors are still in the midst of rewriting their applications to exploit the in-memory revolution.

And while benefits exist today, even more compelling scenarios are coming soon. The holy grail is in sight: a single data store supporting transactions and analytics. This is great news for CIOs looking to simplify the complexity of back-end integration and data management. It’s even better news for end users, with new experiences made possible by the simplified, unified landscape.

OLTP Row-based structure suited for transactional integrity and SQL-based querying. Complex queries and joins require tiered processing, with staging of intermediate results, leading to more I/O overhead.

<table>
<thead>
<tr>
<th>Record</th>
<th>Name</th>
<th>Product</th>
<th>Status</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Customer 1</td>
<td>Product A</td>
<td>Open</td>
<td>11111</td>
</tr>
<tr>
<td>2</td>
<td>Customer 2</td>
<td>Product B</td>
<td>Open</td>
<td>22222</td>
</tr>
<tr>
<td>3</td>
<td>Customer 3</td>
<td>Product C</td>
<td>Open</td>
<td>33333</td>
</tr>
<tr>
<td>4</td>
<td>Customer 4</td>
<td>Product B</td>
<td>Open</td>
<td>44444</td>
</tr>
</tbody>
</table>

OLAP Data is organized by attributes (what would be columns in relational structure), allowing compression, eased aggregation and analytics, and faster complex queries across large data sets.

<table>
<thead>
<tr>
<th>Record</th>
<th>Name</th>
<th>Product</th>
<th>Status</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Customer 1</td>
<td>Product A</td>
<td>Open</td>
<td>11111</td>
</tr>
<tr>
<td>2</td>
<td>Customer 2</td>
<td>Product B</td>
<td>Open</td>
<td>22222</td>
</tr>
<tr>
<td>3</td>
<td>Customer 3</td>
<td>Product C</td>
<td>Open</td>
<td>33333</td>
</tr>
<tr>
<td>4</td>
<td>Customer 4</td>
<td>Product B</td>
<td>Open</td>
<td>44444</td>
</tr>
</tbody>
</table>

Footnotes: ¹ online transaction processing. ² online analytical processing.
Reinventing production planning

When a large aerospace and defense company sought to uncover and overcome challenges in its ability to deliver products on time, the company turned to an in-memory-based analytics platform.

By using descriptive statistics to determine the root causes of the performance issues, they discovered that only a small number of the more than 50,000 assembly parts delivered performance within 10 percent of the company’s plan, uncovering the need for more accurate data to fuel the planning process. Additionally, performance variation among component parts was high. By splitting the bill of materials into delivery segments, more advanced statistics could be generated, allowing performance to be evaluated at the individual part level.

Predictive models were then used to determine the factors contributing to the longer lead times. Subsequently, 35 unique parts were identified as representing significant risks to meeting delivery timelines. Clustering analytics assigned these high-risk parts into 11 groups of performance improvement tactics. Finally, predictive models were again run to align performance targets and financial goals with each of the tactics identified.

As a result of the diagnostics and actionable insights generated by this analytics platform, benefits valued in excess of $100 million were achieved. In addition, reduced product lead time, reduced inventory holding costs, and a 45 percent increase in on-time delivery were attained.

Drilling for better performance

Pacific Drilling, a leading ultra-deepwater drilling contractor founded in 2008, grew aggressively in its first few years. As a result, IT was tasked with providing a state-of-the-art platform for measuring company performance. Additionally, Pacific Drilling’s ERP system—implemented early on in the company’s life—was due for an upgrade. The company selected an approach that addressed both projects, allowing it to keep pace with expansion plans and gain a strategic edge with its information system.

Pacific Drilling implemented a single in-memory data platform for both advanced analytics and its upgraded ERP system. On this platform, the company was able to more effectively run maintenance, procurement, logistics, human resources, and finance functionalities in its many remote locations. It also could perform transactional and reporting operations within one system in real time.

Business leaders are gaining insight, while IT delivers reports and dashboards with reduced time-to-value cycles.

With an in-memory solution, Pacific Drilling can more effectively measure performance and processes across the enterprise, and is better positioned to expand its business and competitiveness in the industry.
Communicating at light-speed

In the telecommunications industry, the customer experience has historically been defined through a series of disconnected, transactional-based interactions with either a call center or retail store representative. Customers have likely witnessed frustrating experiences such as service call transfers that require repeated explanations of the problem at hand; retail store interactions conducted with little understanding of their needs; and inconsistency of products and offers across different channels. While some companies may see this as a challenge, T-Mobile US, Inc. recognized an opportunity to innovate its customer experience.

The challenge many companies face is a “siloed” view of customer interactions across traditional marketing, sales, and service channels, as well as across emerging channels such as mobile devices and social media. T-Mobile recognized the potential in connecting the dots across these interactions and creating a unified customer experience across its channels, both traditional and emerging. By shifting its customer engagement model from reactive to proactive, T-Mobile could understand, predict, and mitigate potential customer issues before they occur and drive offers based on an individual’s personal history (i.e., product usage, service issues, and buying potential). This was certainly a tall order, but it was a compelling vision.

T-Mobile’s approach was to create a single view of customer interactions across channels. Each time a customer interacts with T-Mobile, the company records a “touch,” and each time T-Mobile corresponds with a customer, the company also records that as a touch—creating a series of touches that, over time, resemble a conversation. The next time that T-Mobile and a customer interact, there are no awkward exchanges: The conversation starts where it left off. And the collection of touches can be used in real time to drive personalized pricing and promotions—through the web, on a mobile device, or while talking to a call center agent.

The situation T-Mobile faced when getting started: Two terabytes of customer data, created just in the last three months, stored in 15 separate systems with 50 different data types. Producing a single, consumable view of a customer’s interaction history with the company’s existing systems was likely impossible. Add the desire to perform advanced analytics, and it was clear the existing systems could not support the effort. To address these technical limitations, T-Mobile implemented an in-memory system that integrates multichannel sales, service, network, and social media data. The powerful data engine, combined with a service-oriented architecture, allows T-Mobile to capture customer interactions in a dynamic in-memory data model that accommodates the ever-changing business and customer landscape. The in-memory capabilities enable the integration of advanced customer analytics with a real-time decision engine to generate personalized experiences such as a discount for purchasing a new device the customer is researching or an account credit resulting from network issues impacting the customer.

T-Mobile’s multichannel customer view takes the guesswork out of providing “the next best action” or “the next best offer” to customers. Data integration across traditional and emerging channels allows T-Mobile to see the full picture of a customer’s experience so its employees can proactively engage customers with the appropriate message at the appropriate time. The importance of the customer experience has never been greater, and T-Mobile is shaking up the wireless industry by eliminating customer pain points. Customers can take advantage of its no-annual-service-contract Simple Choice Plan, an industry-leading device upgrade program, as well as unlimited global data at no extra charge. By implementing an in-memory platform to better understand its customers, T-Mobile continues to extend its competitive advantage with its differentiated customer experience.
Next-generation ERP

With customers demanding reductions in time-consuming workloads and better performance of transactional and informational data, ERP providers are looking for ways to improve existing products or introduce new ones. In-memory capabilities, often used for analytics in the past, can give vendors a way to address such concerns and create core business offerings that were previously unachievable. Both SAP and Oracle provide technical upgrade paths from recent releases.

To this end, Oracle announced the release of 13 in-memory applications with a performance improvement of 10- to 20-fold. Seven of these applications are new, intended to make possible several business processes previously deemed too intensive. Changes to the algorithms of six legacy applications will also allow in-memory versions to be created. Additionally, an in-memory option, intended to double the speed of transaction processing, has been added to the core 12c database.

Similarly, SAP has shifted its core business applications to an in-memory database and has gained the participation of more than 450 customers as of October 2013. For these customers, this shift could make real-time financial planning possible, including interactive analysis of vast amounts of data. The outcomes of immediate data-driven decision making may soon be seen as adoption of in-memory business applications continues.
My take

Jason Maynard, software and cloud computing analyst, Wells Fargo Securities

The in-memory movement is upon us and a bevy of approaches are emerging to solve new and existing business problems. So with the goal of doing things “faster, better, cheaper,” in-memory databases help to get you the “faster”—with an opportunity for “better” and “cheaper” when you use in-memory to tackle business, not technical, problems.

From my perspective, mass-market in-memory adoption is still in the early stages but poised to gain momentum. While in-memory database systems aren’t new per se, they are gaining in popularity because of lower cost DRAM and flash options. I think it has greater potential than many recognize—and more known use cases than many believe. The available products still have room to mature in their development lifecycles, and I think customers are looking for pre-packaged, purpose-built applications and platforms that show concrete benefit. I think there is opportunity, however, for early-adopting customers to lead the charge and gain competitive advantage.

In-memory databases are database management systems that use main memory for computer data storage instead of disk storage. This brings benefits such as faster performance, faster response time, and reduced modeling. Many industries, such as financial services, telecommunications, and retail, have used in-memory for trading systems, network operations, and pricing. But as new modern systems such as SAP’s HANA, Oracle’s Exalytics, and a number of startups appear, the market should expand in size. Moving in-memory from specialized markets to mainstream adoption means that many applications may need to be rewritten to take advantage of the new capabilities. SAP’s HANA database engine supports analytic applications and transactional systems. Oracle has released a number of in-memory apps across its application product portfolio.

My advice for companies is to start small. Identify a few bounded, business-driven opportunities for which in-memory technology can be applied. Budgeting, planning, forecasting, sales operations, and spreadsheet-driven models are good places to start, in my view. Their massive data volumes and large numbers of variables can yield faster and more informed decisions and likely lead to measurable business impact. The idea here is to reduce cycles and increase planning accuracy. By allowing a deeper level of operational detail to be included within the plan, users can perform more what-if scenario modeling iterations in the same budgeting window. This means insights can be put to use without reengineering the back-end core processes and existing transactions can be run with more valuable, timely input. Among others, Anaplan has released a cloud-based planning and modeling solution that was built with an in-memory engine.

The extended ecosystem of ERP vendors, independent software vendors (ISVs), systems integrators, and niche service providers are working hard to close the gap between in-memory’s potential and the current state of the market. It will take time, and the full potential is unlikely to be realized until application stacks are rewritten to take advantage of the new data structures and computational scale that in-memory computing provides. But—in-memory computing has the potential to transform business.
VENDORS are making strategic bets in the in-memory space. IBM and Microsoft have built in-memory into DB2 and SQL Server. A host of dedicated in-memory products have emerged, from open source platforms such as Hazelcast to Software AG’s BigMemory to VMWare’s SQLFire.

But for many CIOs, the beachhead for in-memory will come from ERP providers. SAP continues to heavily invest in HANA, moving from analytics applications to its core transactional systems with Business Suite on HANA. SAP is also creating an ecosystem for developers to build adjacent applications on its technology, suggesting that SAP’s HANA stack may increase over the next few years.

Oracle is likely making a similar bet on its latest database, 12c, which adds in-memory as an option to its traditional disc-based, relational platform. While there will be disruption and transition expenses, the resulting systems will likely have a lower total cost of ownership (TCO) and much higher performance than today’s technology offers.

In addition, Oracle and SAP are pressing forward to create extensive ecosystems of related and compatible technologies. From captive company-built applications to licensed solutions from third parties, the future will be full of breakout opportunities. Continuous audits in finance. Real-time supply chain performance management. Constant tracking of employee satisfaction. Advanced point-of-sale solutions in retail. Fraud and threat detection. Sales campaign effectiveness. Predictive workforce analytics. And more. Functions that can benefit from processing crazy amounts of data in real time can likely benefit from in-memory solutions.

Vendors are pitching the benefits of the technology infrastructure, with an emphasis on real-time performance and TCO. That’s a significant start, but the value can be so much more. The true advantage of an in-memory ecosystem is the new capabilities that can be created across a wide range of functions. That’s where businesses come in. Vendors are still on the front end of product development, so now is the time to make your requirements known.

• **Start by understanding what you’ve already bought.** In-memory is an attractive and invasive technology—a more effective way of doing things. You may already have instances where you’re using it. Assess the current benefits and determine what more you may need to spend to capitalize on its real-time benefits.

• **Push the vendors.** Leading ERP vendors are driving for breakthrough examples of in-memory performance—and are looking for killer applications across different industries and process areas. Talk with your sales reps. Get them thinking about—and investing in—solutions you can use.

• **Ask for roadmaps.** Move past sales reps to senior product development people at vendors and systems integrators. Ask them to help create detailed roadmaps you can use to guide the future.

• **First stop: analytics.** You’ll likely find more immediate opportunities around your information agenda—fueling advanced analytics. In-memory can be used to detect correlations and patterns in very large data sets in seconds, not days or weeks. This allows for more iterations to be run, drives “fast failing,” and leads to additional insights and refined models, increasing the quality of the analysis. These techniques used to be reserved for PhD-level statisticians—but not anymore.
• **Focus on one or two high-potential capabilities.** No company wants to conduct open-heart surgery on its core ERP system. Instead, pick a few priority functions for your business to gain buy-in. Your colleagues need to see the potential upside before they’ll appreciate what a big deal this is. Analytics is a good starting point because it’s fairly contained. Customer relationship management (CRM) is another good match, with its focus on pricing agility and promotion. After that, consider supply chain and manufacturing.

• **Watch competitors.** Experimentation will take place in many areas over the next two years. If a competitor develops new capabilities with demonstrated value in a particular area, the dam will break and the adoption curve will take off. Be ready for it.

Bottom line

Some technology trends explode onto the scene in a big way, rapidly disrupting business as usual and triggering an avalanche of change. Others quietly emerge from the shadows, signaling a small shift that builds over time. The in-memory revolution represents both. On the one hand, the technology enables significant gains in speed, with analytics number-crunching and large-scale transaction processing able to run concurrently. At the same time, this shift has opened the door to real-time operations, with analytics insights informing transactional decisions at the individual level in a virtuous cycle. The result? Opportunities for continuous performance improvement are emerging in many business functions.
Authors

Mike Brown, principal, Deloitte Consulting LLP

With 20 years of experience in technology strategy and planning, Mike Brown helps clients identify opportunities to better leverage their technology and applications, especially Oracle technology and enterprise applications.

Doug Krauss, specialist leader, Deloitte Consulting LLP

Doug Krauss is a specialist leader within Deloitte’s Information Management practice. He has over 20 years of experience in the business intelligence and data analytics space. He also leads the SAP HANA innovation platform to support client pilots, proof of concepts, and demonstrations.
Endnotes

1. ACID is an acronym for four rules for database transactional integrity: Atomic (ability to guarantee either the completion of a unit of work, or roll back the system upon failure), Consistent (ensure updates are applied everywhere—without violating any constraints or dependencies), Isolated (transactions execute independently without interference), Durable (transactions are persistent once committed).

In-memory revolution
A public sector perspective

Information technology (IT) systems have progressed from handling megabytes of data to dealing with gigabytes and terabytes, and, more recently, petabytes and exabytes. According to one estimate, the total amount of digital data in the world is doubling every two years, and it will grow from 130 exabytes in 2005 to 40,000 exabytes, or 40 trillion gigabytes, in 2020.1

The proliferation of connected sensors that are part of the emerging Internet of Things has shifted the data focus to big data analytics, sentiment and visual analysis, and the always-connected user. These trends are likely to further accelerate the growth in data and ratchet up the pressure for rapid response to changing conditions.

For years, transactional systems were constrained by resource limitations. Memory, always in demand, is one factor that has affected the amount of data that could be processed, searched, and analyzed at one time. With advances in memory, however, entire data sets, multiple databases, and analytical models can now fit within the computer’s memory, only a few steps from the core.

In-memory computing has the potential not only to revolutionize reporting, but to enable a shift from batch processing to real-time transactional and analytical processing for enterprise resource planning (ERP) and other business systems alike. While in-memory computing is not a new technology, it is gaining adoption due to lower hardware costs and new analytics tools. Many commercial enterprises have taken advantage of it, but can public sector CIOs harness in-memory computing’s speed and efficiency to change the way they currently do business while also creating opportunities for new services?

What is different for the public sector

Data is the backbone of government, just as it is for business. As the amount of data continues to increase exponentially, so has the challenge of being able to store and process it in a timely manner. While the sheer amount of information available opens up exciting new possibilities for analysis and discovery, trying to manage enormous data sets can take unacceptably long times and even bring conventional data processing systems to a screeching halt.

By moving from traditional storage media to much faster solid state system memory, in-memory computing can yield immediate gains of several additional orders of magnitude in processing time, representing a potentially revolutionary game changer in the ability to put big data to work. In addition to accelerating analysis, it can reduce the space and power needed to store data, as well as lower costs substantially, and it opens possibilities of performing both real-time transactions and analytics based on the same data set. One vendor has predicted that because of its multiple advantages and the steadily falling cost of memory, all IT operations will run in-memory within 15–20 years.2

In-memory computing, for example, offers the potential to detect fraud in real time because more historical and associated data can be kept in the application, allowing analytics to be performed during the processing of a transaction instead of after the fact. A report from SAP and Government Business Council summarized that reducing improper payments at various federal agencies...
from 5 to 6 percent could result in annual savings of $5 billion. More effective, more rapid analyses of expenditures, which this technology makes possible, could yield savings of this magnitude.

This shift, though, may be a big undertaking for many public sector agencies that have significant investments in legacy systems with years, even decades, invested in creating custom code. As ERP players reinvent the engines on which they run, agencies can refresh their capabilities and develop next generation mission services by considering how in-memory computing can benefit their operations—first with regards to analytics and, eventually, for transactional capabilities. Broad adoption is now possible due to the low cost of hardware (or inexpensive access to cloud computing resources).

Shifting to new computing platforms may require waiting until the mission program undergoes a complete technology refresh. Moreover, to support this new style of computing, agencies may need to bring in new programming, analytics, and business process reengineering skills, either through new hires or by working with contractors.

One possible source of support for adoption within the federal government is the White House’s big data initiative, announced by the administration in 2012, which is providing funding for efforts to improve the use of data in government and is sponsoring research to advance state-of-the-art technologies.

Lessons from the front lines

- **In-memory computing has broad applicability.** Its relevance will depend on the nature of each public sector organization’s mission and the urgency of its need to rapidly process large data sets to fulfill that mission. The military, which increasingly relies on the ability to gather, interpret, and deliver real-time battlefield intelligence gathered from multiple sources, is one potential candidate to benefit from in-memory computing’s capabilities. The U.S. Navy was an early adopter of the technology, having decided in 2006 to use an in-memory database to support the electronic and combat systems for its next-generation Zunwalt class of guided missile destroyers. Of course, not all agencies are under immediate pressure to speed up their decision making. In many cases, the ability to act in minutes rather than hours or even days is not necessarily critical—at least in the short run—to making better decisions or fulfilling a mission.

- **Shifting to the speed of today.** Users now have higher expectations for information, and demand it regardless of time or place. In-memory computing helps to deliver what the user wants to see—often data aggregated from multiple sources, assembled, and analyzed alongside a transaction—in near real time. Public sector organizations adoption should focus on areas where speed and flexibility matter—and where they might need to be able to deliver answers today rather than tomorrow. Law enforcement investigators and financial regulators, for example, have to make assessments based upon critical data points drawn from voluminous data sets.

- **Small investments can demonstrate big returns.** A simple technology refresh and a quick rewrite of timely traditional reports can deliver significant results. Other uses are less obvious, but no less valuable. In-memory computing has made a notable contribution at the U.S. Department of Agriculture (USDA), which is using the technology to streamline the process of creating complex financial reports. The underlying datasets used for the reports were so large that the existing system could not process them efficiently. USDA found that it was typically taking nearly
an hour to generate a year-end report. Using in-memory computing, the USDA was able to reduce processing time to just 23 seconds. By decreasing the time to compile the needed data, the USDA was able to process multiple iterations of the reports—making adjustments, catching, and correcting errors each time—to help ensure that the end product was accurate and complete. In this case, an increase in processing speed made possible an improvement in quality.

Getting started

- **Identify a need.** Agencies contemplating adoption should ask what time-sensitive applications are straining the limits of current technology—whether it is due to the size or the heterogeneity of the data or the diversity of uses to which the data is being put. Are there instances where getting an answer more quickly to more end users would make a significant difference in how an agency fulfills its mission? Are

In-Memory in motion at U.S. Postal Service

The Transaction Records Processor (TRP) application supports multiple key initiatives within the U.S. Postal Service (USPS), including the implementation of the Total Revenue Protection solution, as well as the real-time processing of address information to dynamically route the mail carriers.

The TRP application is based on an in-memory, high-density computing architecture. Scot Atkins, USPS’s Technical Architect for this program, mentioned that the in-memory architecture goes beyond the traditional high performance computing and uses High-Density Super Computing technology. The High-Density Super Computing approach provides more benefit in terms of higher speed and efficiency, as well as the ability to handle more data in real time. USPS is one of the first federal organizations to break the 1 TB processing barrier. This in-memory application solves the disparity between the requirement to process big data in real time and the need for high-processing capabilities.

USPS is using the in-memory technology to develop capabilities that help the organization save money, as well as grow new business. As part of implementing the Total Revenue Protection application, USPS is able to identify packages in real time that are under postage, prevent fraud, and help save vital revenue for the postal service. USPS is also using the same technology for real-time processing of address information and implement new solutions to dynamically deliver packages for various e-commerce retailers.

As part of future innovations, USPS has certain patents pending in the field of high-affinitive data processing. This ongoing work will help further improve the data processing efficiencies and provide real-time operational intelligence to reduce costs, improve service performance, and identify new market opportunities. The TRP program has been implemented under the oversight of Jim Cochrane (USPS, CIO) and Steve Dearing (Manager, Mailing Information Systems).
there applications that could benefit from the ability to perform flexible analytics on the fly rather than fixed queries that have to be programmed in advance? If so, in-memory computing might offer a solution worth exploring.

- **Begin with a proof of concept.** Once a specific use case has been identified, a good way to determine the real value of in-memory computing is to carry out a small trial internally, within an agency’s own environment. If bringing in new computing technology assets is complicated by a contracting, acquisition, or data center constraint, it may be possible to experiment in a cloud-based environment to validate the ideas, experiment, and potentially augment current capabilities. The USDA, for example, began by accelerating a few financial reports. Once the improved performance was established and understood, it expanded in-memory computing for additional uses in support of the mission.

- **Develop a road map.** Public sector organizations should also ask where data resources are growing most rapidly. Even if the data can be handled adequately today with conventional technology, is it possible to foresee a point when the sheer volume of data will outstrip existing capacity? For high-velocity data sets (such as streaming video or sensor data), in-memory computing now allows these data feeds to be processed on the way in and then stored with the raw, metadata, and initial insights or value assessments. As the cost of memory continues to fall, organizations should identify the crossover point where it becomes not just interesting, but compelling in terms of reducing costs (storage, time, networking, distribution/sharing, etc.).

- **Start with analytics, and move to transactions.** Initial uses for in-memory computing will likely focus on improving reporting and analytical capabilities. But one of the promises is the ability to run both analytics and transactions on the same data set. Understanding patterns in law enforcement data collection, financial and grant transactions, and cyber forensics in real time could help agencies streamline operations and identify potential issues as they happen. Now is the time to begin thinking about where such a capability could make a difference.

Bottom line

In-memory computing may still seem a bit leading edge for the general public sector IT portfolio, but the potential benefits are compelling. The technology offers the ability to make use of larger, more diverse data sources, providing the ability to address, and then deliver quicker response times on complex queries as well as offering new insights from across multiple data sets, leading to cost savings or fraud reduction. In-memory computing can provide agencies the flexibility to produce reports and answer questions on the fly, and it can lower cost of ownership over time through a more efficient handling of the data. As the cost of memory continues to decline and programmers and data scientists see the possibilities, in-memory computing should continue to migrate from niche applications to the heart of IT.
Authors

Joseph Antous, director, Deloitte Consulting LLP

Joseph Antous is a leader in Deloitte’s Federal Information Management practice. He has more than 20 years of experience designing, developing, and implementing large-scale IT and Information Management systems in both the commercial and public sectors.

Derick Masengale, director, Deloitte Consulting LLP

Derick Masengale leads Deloitte’s Federal Information Management service line and brings more than 20 years of industry experience in architecting and managing business intelligence, information management, and CRM solutions for government and commercial organizations.
Endnotes

6. Scot Atkins, Program Manager High Density Supercomputing (HDSC) and Revenue Protection at United States Postal Service, in person interview, January 2014.
Real-time DevOps
Empowering the business of IT

When it comes to application development (Dev), the business cares about speed and quality. How fast can I get what I want? How close will it be to what I need? Contrast that with IT operations (Ops), held accountable for response times, stability, and efficiency, and focused on how to reduce business disruptions at the lowest cost. These are very different core missions that yield very different behaviors. Dev is looking to compress delivery cycles and adopt “experiment and learn” mentalities. Ops is looking to institute controls and more tightly govern change. The fact that the “build” and “run” shops are typically separate organizations only adds to the divide.

Further complicating matters, both Dev and Ops could each benefit from investments in enabling technology—creating automated capabilities in the business of IT akin to what finance, manufacturing, and the supply chain have invested in over the past decades. But even as requirements management, system maintenance, and other disciplines are upgraded, incremental investments in disconnected activities will go only so far.

The real goal is to bridge the gap between development and operations, supercharging the investments that currently exist in siloed automation by integrating the end-to-end delivery model. Simply stated: real-time DevOps.

Some companies have been using automation to accelerate and improve steps in their development processes for a while. But many more have not. In fact, a recent survey of 1,300 senior IT decision makers revealed that only 39 percent had already invested in pieces of DevOps.\(^1\) Complacent about their time-tested, over-the-wall approaches to software development, many IT organizations have settled for manual, disjointed processes that have rightly earned a reputation for ineffectiveness and inefficiency.

It’s complicated

Complexity surrounds DevOps. From basic design principles and defect tracking to release management, configuration management, and more, the interdependencies of the software development lifecycle are real and complicated. All the more reason to automate and integrate the process.

The rise of agile is one of the factors driving increased interest in real-time DevOps. What was once seen as an experiment is now mainstream, with more than 70 percent of companies reporting at least partial agile adoption.\(^3\) At its core, agile is about “test, experiment, learn, and repeat.” It’s based on
short sprints—typically one or two weeks—to get to a potentially releasable product. That’s instead of development cycles that last many months or years.

Accelerated time to market is one possible benefit, but just as important are the side effects of better managing changing priorities and improved alignment with the business. Agile backlogs represent potential work to be completed—stemming from new ideas, unmet requirements, or enhancements and fixes coming back from operations. Each sprint sees the business sponsor (or product owner, in agile parlance) re-establish priorities. Development teams then tackle those items on the top of the list.

Contrary to popular misconceptions, agile development often requires a more disciplined approach than traditional software development methods. It can also provide more transparency in the development process—and real-time visibility into progress. Iterative, rapid development begs for structure and rigor, which are available through the automated, integrated capabilities of real-time DevOps.

Continuous build and continuous integration are big parts of real-time DevOps. Code is constantly being fed back into configuration management and validated via testing automation suites, giving developers affirmation that quality is continuously monitored, with dependencies managed automatically in the background. Companies gain the ability to automate technical compliance and structural correctness, as well as a continuous measure of how requirements are being met.

Environment provisioning and management is another opportunity area. Traditionally, projects had to accept up-front capital spend and ramp-up delays while hardware and software were ordered, installed, and configured. With the rise of virtualization, cloud, and software-defined data centers, this process can be largely automated: not only procurement, but also configuration of servers, networks, storage, operating systems, platforms, applications, transactions, and
data—including the automated provisioning of user accounts based on profile types.

Real-time DevOps also includes test automation. When coupled with requirements management, functional, user, and even behavioral scenarios can be scripted for automated quality assurance (QA). This benefits development cycles and also serves as the benchmark for regression scripts—accelerating break/fix and maintenance processes. For areas such as web and mobile development, this might also include build-verification services across devices and operating systems—analyzing across an increasingly fragmented landscape.

Where there’s a waterfall, there’s a way

While agile is helping to showcase the need for real-time DevOps, these concepts are just as relevant for waterfall shops. Handoffs and manual steps typically waste time in the development process. Collapsing the time it takes to develop software, and creating more thoughtful linkages to operations, are universal benefits.

Also, real-time DevOps does not mean that existing Information Technology Infrastructure Library (ITIL) and governance processes need to be scuttled. Indeed, IT service management should have a more explicit link to software development across the lifecycle, with identified issues fed into the backlog for prioritization. Ongoing patching and infrastructure upkeep should still be done, and with real-time DevOps, it will likely be better coordinated with development. Improving outage recovery and minimizing release fail rates are expected outcomes from real-time DevOps—as well as expedited code deployments and improved developer throughput.

Real-time DevOps is not a tool, though tools make it workable. And it’s not only about agile, though agile practices have brought the benefits to light. Instead, real-time DevOps is a process shift that changes the cadence of how much can be done—and in how much time.
Moving at the speed of commerce

John Lewis PLC, a UK-based retailer with 40 department stores, replaced its customer-facing e-commerce platform in early 2013. This was a complex project involving a team of over 100 employees and consultants working across multiple systems: web storefront, web management, product management, and delivery management. To support this project, multiple development environments were used. Each one was carefully managed to support its respective development stream. Code was then deployed across many additional environments: system testing, integration, performance, training, and ultimately production.

To meet the project’s pace and flexibility demands, John Lewis focused on DevOps and took measures to increase the frequency and richness of communications between the development and project operations teams, resulting in a prioritized list of DevOps-related enhancements. Many of these took the form of process automation in order to improve reliability, repeatability, and speed.

Since the go-live in early 2013, the company has continued to develop and refine its DevOps processes, focusing on efficiency and reliability. Automation has continued to be a main theme: Automated browser-based functional tests have been adapted so that they can be used on larger, fully integrated environments as both smoke and regression test suites. With real-time DevOps practices in place, John Lewis can now deliver one complete (back- and front-end) release per month. Previously, releases were only carried out every six to eight weeks.

With the positive results from using real-time DevOps practices on the e-commerce project, John Lewis is now expanding these practices to other projects, scaling the operation and creating a clear delivery and project operations team for the enterprise. Additionally, the company is looking to orchestrate its automated processes, enabling an end-to-end, “one click” deployment across multiple systems.

Supporting IT’s health and well-being

The state of West Virginia’s Department of Health and Human Resources (DHHR) administers programs that benefit its citizens, such as cash assistance, food stamps, and Medicaid. In support of this mission, the department depends on an integrated solution made up of more than 30 subsystems providing case management, eligibility determination, and benefits issuance functionality.

Given the breadth of business functionality, the size of the solution, and ongoing changes resulting from federal mandates, DHHR wanted an application development and maintenance process that could efficiently support multiple, parallel initiatives. To meet this objective, the organization implemented a schedule of weekly patches and monthly enhancement releases supported by an automated build and deployment process.

DHHR’s DevOps program included multiple integrated, automated components such as defect and change request tracking, build and deployment, smoke testing,
and regression testing. Additionally, the organization created an administration dashboard to schedule, manage, and track builds throughout the release cycle. By integrating its defect and change request tracking with automated build and test utilities, DHHR is able to build only those components tied to tested defect fixes or enhancements—preventing untested components from being migrated to higher environments.

As a result of implementing real-time DevOps, DHHR has increased the success rate of software builds by 58 percent. Additionally, the processes have improved the software quality, which means DHHR’s production rollback plan is gathering dust on the shelf.

A healthy dose of collaboration

For a leading health plan, history seemed to repeat itself whenever the company adopted new technologies: The lack of communication across its enterprise resulted in significant delays in delivering new business solutions. Collaboration between operations and testing didn’t occur until the late stages of implementation, and development often proceeded without a holistic view of business requirements. To make matters more challenging, the core implementation teams—operations, requirements, delivery, and testing—were geographically dispersed across multiple locations, both onshore and offshore. As a result, the health plan sought a real-time DevOps and agile/Lean IT approach to streamline communication across the enterprise and accelerate delivery of new business solutions to its users.

The transition to real-time DevOps and agile/Lean IT began by integrating the business functions into a single enterprise environment, creating cohesion from the initial stages of requirements gathering through final deployment. The organization introduced automated processes to build, test, and deploy systems, allowing users to see material progress in four- to six-week release cycles. The process resulted in an efficiency gain of over 50 percent by reducing unproductive wait times throughout the project life cycle, such as by enabling a reduction in the test execution window. There was an increase in overall delivery effectiveness, providing a higher degree of business consistency, flexibility, quality, and satisfaction. When talking about deployment, teams now look at their watches, instead of the calendar.
A new policy for IT

A leading insurance company with a highly distributed IT organization comprising both internal and external resources started a journey to centralize its infrastructure, creating a services company construct. As part of that effort, the company internalized resources, created a more direct reporting structure to the CIO, and implemented a centralized application development group (ADG) of approximately 5,000 people.

One of the goals of implementing the ADG was to jump-start the company’s transition to an agile development organization. As development projects transition into the ADG, they are implemented using an agile methodology. Organization-wide, about 25 percent of development at the company is currently delivered by the ADG using agile. The transition to the ADG has enabled a renewed focus on DevOps and on the goals of standardization, automation, and integration.

Each of the company’s key infrastructure platforms was at varying stages of automation and integration. Real-time DevOps first took hold in two separate virtualized environments that already shared many common elements. As applications were built into those environments, their configurations were standardized. This allowed the company to automate more of its DevOps processes—environment provisioning, release management, system monitoring, and others. Efforts are underway to expand the standardization and automation of the company’s platforms and processes—and to integrate the various capabilities.

One of the ADG’s goals is to continually improve its delivery of what the business wants, which can drive heavy application complexity. With the IT organization moving from a catalog of distinct and separate parts to a service-based model, its approach to building applications has changed accordingly. The ADG is standardizing infrastructure components and applications and is working to automate even more of the work that comes in the door. The company is also looking into which service levels are needed by classifying applications into gold, silver, and bronze categories.

For the company’s leadership, engaging its in-house workforce is a priority. DevOps had a strong, positive impact on relationships within the IT department—in particular, the infrastructure team and the ADG. The intangible benefits of improved collaboration and teaming are valued as much as increased quality of work, cost reduction, or reduced development times. DevOps is also a building block for better partnering between the business and IT.

In this effort, the company realized that the IT organization could not get to a service-based relationship with the business if it didn't have a service-based model in place. Leadership knew that it was important to map what it did in IT to what the business actually does for its customers. By getting that foundation in place, IT and the business could start having conversations at a higher level.
I’m an unapologetic DevOps geek. As vice president of technology in the PTA at my son’s school last year, I built its website and set up real-time monitoring and automated management processes on a virtual machine the site lived on. It was total overkill for such a small website, but I had fun doing it. With the ease of use and price point of tools, even a kindergarten class can take advantage of real-time DevOps.

At FOX Sports, we are actively building out DevOps and continuous integration. We use Jenkins for the automated build process, which is essentially the beginning of continuous integration for us. We’re also working on quality assurance automation so we can arrive at the point where we are creating an environment that has been tested and deployed—automatically. The next step will be broader testing automation starting with unit and regression testing. We’ll draw a line somewhere; you risk automation overkill if you go too far. But we’re not there yet.

In my role, DevOps is about having the information needed to make informed decisions. A large part of that is the combination of real-time monitoring approaches and mechanisms for teams to communicate. Monitoring can tell you a lot. If you see a spike in website traffic, you can easily pinpoint it and figure out what’s going on. It might be a good thing like a surge in user activity or it could be because of a defect from a recent build or infrastructure maintenance. Early indicators let me take action—hopefully before the business is affected.

Enabling DevOps was driven by both business and technical needs for us. We needed to make process improvements in order to meet our goals for creating leading, timely content. We’re driven by the sports calendar—it makes for lots of hard deadlines and constant activity. This year, the Super Bowl and the Winter Olympics opening ceremony fall within the same week—and we’ll be up for the challenge.

Our strategy for DevOps is ever-changing here at FOX Sports as technologies grow and we learn. Bettering the number of features delivered, turnaround time to get a new environment provisioned, and mean time to repair defects are examples of expected outcomes. Currently we can support a build every 30 minutes, and we’re taking lessons from our current processes to inform our next steps.

My advice for others is to employ DevOps. Look at the data. Get started with continuous integration. Look at your current deployment process—and consider the hours your team is spending to deploy and test code. DevOps requires an investment up front, but pays dividends in the long run. Over time, you can simply make tweaks to the process and keep rolling out code and testing in an automated fashion.

Not only do I recommend it, but I think it has become the rule, not the exception. A little work up front can save significant effort across the board.
Where do you start?

While there are many opportunities to make a shift to real-time DevOps, there are some places where you likely can’t live without it: mobile, social, and big data. In these fast-growing spaces, disjointed, bottleneck-ridden development processes can undermine your efforts. Unless you can find a way to accelerate without sacrificing quality—and real-time DevOps is likely that way—you’ll find yourself out of the loop as the business bypasses IT by going directly to the marketplace.

• **Establish the need.** Conduct your own benchmarking to identify delays and waste in the software development process. Uncover how much time is spent on manual document capture, build management, build verification, release planning, and test script development. These are opportunities for action.

• **Build new skills.** Tool configuration and scripting skills are a part of the equation, used to drive version control, configuration management, test harnesses, ticketing, environment provisioning, and system maintenance and monitoring. But soft skills are just as essential for real-time DevOps to take hold. Team members will be collaborating with the business, program and project managers, developers, testers, and the operations teams. Make sure your core team isn’t simply making the new technologies adhere to how things have historically been done.

• **Employ services thinking.** For real-time DevOps to be viable with legacy ERP and large-scale custom solutions, break down complex systems into components and modular services. This allows for rapid incremental changes within monolithic code bases—and sets up the organization for a broader modernization play.

• **Lay down the bases.** Once you understand the pain points within your organization, begin automating individual components. Establish a continuous integration build server for your developers, create a small “smoke test” suite of cases to validate builds, and implement a release automation tool. Also, look to add automation within your development, test, and infrastructure tracks in parallel with similar, discrete steps.

• **Connect the dots.** Once you have some of the automation components in place, look for ways to link them into a single stream that can shorten cycles. Not just integration between requirements, but continuous integration—linking to build, to defect tracking, to configuration management, and to release management. In this model, the handoffs and touch points happen seamlessly in the background.

• **Get vendors on board.** The opportunity to learn from and build on vendor successes in real-time DevOps is an important way to accelerate your own improvements. You may want to avoid outsourcing agreements with vendors who aren’t using automation as an accelerator.

• **Make the leap to test-driven design—or even behavior-driven design.** Real-time DevOps enables you to move from build-to-run to build-to-verify. This natural evolution leads to design for end-user engagement. That’s where contractors and vendors that provide application development and maintenance (ADM) and/or application management services (AMS) can help you improve.

• **Look beyond cost and speed.** Embrace the lower costs and greater speed that come
with real-time DevOps, but recognize that more substantial benefits are also possible. If you believe that your technology delivery model can benefit from real-time DevOps, it’s time to get teams delivering against your priorities with a much more compressed cadence.

- **Commit.** Too many companies dabble in this world—acquiring tools and adopting some of the terminology, but without making hard changes to their operating and delivery models. If there is a case for real-time DevOps, don’t fall for one-off, surface-level investments. Or if you do, don’t be surprised if you get unremarkable results.

Bottom line

Individual tools for automating the software development lifecycle, maintenance, and monitoring have been available for years, and many companies have been taking advantage of them effectively. Yet few have taken the next step to integrate the pieces and commit to a new cadence of development and operations. That’s because the concept of real-time DevOps is only partially understood. In a recent survey, Gartner “found that only one-third of companies surveyed were either in-process or planning to implement DevOps, and close to 44 percent of respondents were still trying to figure out what DevOps means.”

Early adopters have the opportunity to profoundly improve their IT shops—accelerating IT delivery, improving quality, and better aligning with their businesses. Arm IT with the tools to automate and integrate their core disciplines, and the cobbler’s children will finally have new shoes.
Authors

Ayan Chatterjee, principal, Deloitte Consulting LLP

Ayan Chatterjee leads Deloitte’s Application Management Services service line for the health care providers, health plans, and life sciences industries. He advises clients on ways to gain efficiencies and reduce costs in managing their applications using a globally distributed model.

Alejandro Danylyszyn, principal, Deloitte Consulting LLP

Alejandro Danylyszyn is a leader in Deloitte Digital, helping clients achieve results through the implementation of e-commerce, digital content/asset management, and multi-channel solutions—from strategy to deployment, following agile techniques.

Endnotes

INFORMATION technology (IT) is involved in almost every part of business today. Moreover, the pace of change and new demands on IT shops—composed of development (Dev) and operations (Ops) functions—have outstripped the responsiveness of traditional IT approaches.

Exacerbating this are the innate tensions between Dev and Ops. In general, Dev seeks flexibility to experiment, control their environments, and innovate—all under the guise of shorter cycle times and responsiveness to business requirements. Ops, on the other hand, is charged with keeping the business capabilities stable, operational, and secure, as well as working on process improvements and standardization—all while working within already strained budgets.

When these functions are carried out by different organizations with separate budgets, mandates, and potentially different reporting structures, each optimizes for its own goals and direct stakeholders. Additional challenges may exist when one function (most often Dev) is outsourced, while the other function is carried out in-house.

When organizations bring these two functions together into a real-time DevOps process, benefits can include increased speed and improved quality of developing and implementing capabilities. The shift to integrating Dev and Ops has caught hold initially where agile development methods—faster, iterative deployments where the business is heavily engaged as part of the design process—are used, but its popularity has begun to grow also in shops employing traditional waterfall delivery methods.

What is different for the public sector

A 2013 study sponsored by CA Technologies found that the government agencies were well behind commercial companies in the adoption of real-time DevOps methodology. In fact, the public sector came out dead last in adoption of all of the sectors included in the survey: Just 26 percent of government respondents said that they were currently using DevOps compared to 39 percent of all those in the survey. Among the public sector respondents, nearly one quarter (24 percent) admitted that they were not familiar with the concept and another 30 percent stated that they had no plans to adopt it.

The study above suggests that there are some barriers to bringing Dev and Ops together. Besides unfamiliarity with the DevOps concept, the tension between Dev and Ops is particularly evident in the public sector. Dev and Ops generally have separate goals and budgets, and separate funding (cost allocation), service-level agreements (SLAs), and cost containment initiatives add further complexity to making a change. Another barrier includes some public sectors organizations’ risk-adverse cultures, which may lead CIOs and other leaders to perceive their organizational span of control as a reflection of personal achievement, where processes may outweigh optimizing outcomes and performance.

Further adding to the complexity of bridging the gap between Dev and Ops is the often large scope and scale of public sector projects. IT projects are often developed over many years and over multiyear funding cycles and can include complex requirements, contracting, and reporting structures, as well as stringent regulations. Public sector development program
teams may need new structures, approaches, and incentives to drive alignment and create transparency between Dev and Ops.

Despite these barriers, moving to real-time DevOps practices is attainable. Consider large companies like Google and Facebook and their ability to move rapidly to upgrade their systems and introduce new features. These realities provide evidence that size alone is not an insurmountable barrier for public sector organizations adopting real-time DevOps. However, not all federal or state agencies are vast; smaller agencies and newer agencies without legacy systems and structures may be freer to move toward adopting a more integrated approach to Dev and Ops.

Lessons from the front lines

• **Derive value at the portfolio level.** Start with portfolio analysis to identify good candidates for DevOps and ask how the new tools/processes will yield value. Contracting issues can be worked out. However, consider that not every IT project will be an appropriate candidate for a real-time DevOps approach. New projects may be a better fit, as opposed to retrofitting legacy systems support, particularly if the desire to use DevOps methodologies and tools are stated upfront in the new capability procurement plan.

• **Bridge the gaps, and leverage executive sponsorship.** Set a common vision, and then drive accountability by facilitating a quantitative view of IT to deliver greater predictability in the end results. Among the states that achieved the aggressive goals set by federal legislation to build and launch new health care exchanges, the Commonwealth of Kentucky launched its exchange on time with few issues. Within its first month of operation, Kentucky’s exchange (called Kynect) had enrolled 29,000 people in Medicaid, and had registered more people, per capita, for both Medicaid and private insurance than any other state.²

A few key takeaways include: strong executive-level sponsorship from the governor, and a real-time DevOps approach to implementation. The approach essentially bridged the gap between the in-house group responsible for Ops and Deloitte, which was tasked with Dev.

• **Consider more than the IT function.** The business of IT involves many players. Leading CIOs driving successful DevOps approaches will include their contracting, finance, and human resources counterparts every step of the way. Transitioning from a phased, linear development process to an aligned, iterative cycle of develop/test/manage is new, and involvement from all stakeholders is crucial.

• **Manage risk throughout.** Public sector projects have traditionally been about custom solutions, often with highly visible scrutiny—especially for civil servants—if something goes wrong. Real-time DevOps can make sense where agility and nimbleness are important. For example, one U.S. state devised a phased approach to successfully implement a Web-based health insurance marketplace. The team managed the project’s risk by developing automated build cycles for each release. However, for public sector leaders who want a greater level of risk management and quality assurance compartmentalized, real-time DevOps may not always be the answer.

Getting started

• **Speak a common language.** The first step toward bringing together Dev and Ops is to provide both groups a common view of the environment and a common language that enables them to communicate more effectively. Tools that can help make this happen include deployment managers,
virtualization, continuous integration servers, and automated build verification testing. This can lead to greater predictability in end results, benefiting everyone involved.

- **Leverage agile as a stepping stone.** An important stepping stone toward combining Dev and Ops is moving to an agile development process. Adopting an agile process can strengthen the position of the CIO in an agency because it encourages more frequent and more meaningful communications between IT staff and their customers. Agile can help reduce some of the confusion with long build cycles and separated Dev and Ops efforts. One of the first federal agencies to embrace agile methods (the rise in agile is one of the factors driving real-time DevOps) was the Department of Veterans Affairs (VA), which adopted the approach in 2009 when it had to deliver a new large-scale system. According to Roger Baker, former CIO of the VA, agile offers greater user participation, quicker response to changing mission priorities, and improved on-time performance. After moving to agile, on-time delivery within a $1 billion development portfolio at the VA increased from 30 percent to 80 percent.

- **Help others to see the potential.** Enlist the organization leaders who believe their span of control is important to their personal achievement. Help them to start with adopting some of the new automated tools that exist which not only provide a view of overall operations, but also show in detail how code can affect Ops. Enable a “collective visibility” to illuminate the interdependence of Dev and Ops through enhanced communications. Overall, the transition challenges to DevOps are not solely technically-based, but rather organizationally and governance-based. The tools can provide a platform for cooperation and help better align Dev and Ops teams.

- **Start DevOps on new projects.** As mentioned above, public sector organizations can leverage the opportunity that new projects may offer to develop new practices and enhance agility through more coordinated goals and metrics. New projects, rather than existing ones, can make it easier to develop a collaborative culture.

Bottom line

Automation tools, agile development, and a focus on real-time DevOps offer ways to accelerate and improve capabilities delivered to the mission. While the public sector has lagged behind the business world in adopting them, it has begun to look at them more carefully. For public sector, it is not just about Dev and Ops people, processes, or technology; it is also about the business of IT in public sector. However, IT struggles to keep up with the pace of change as auditability and cost containment replace a profit motivation, adherence to process trumps a performance focus, and limiting risk is often part of a career strategy.

The process of changing to a different way of working may be difficult, but the advantages of integrating Dev and Ops can be significant. The journey does not have to be accomplished all at once: there are steps organizations can take along the way that can make the transition easier. Starting on a discrete scale (with a new project) helps bound the set of players. Looking at the skills, processes (technical and business), and a focused scope helps others to grasp the change and demonstrate how Dev and Ops can achieve common goals.
Authors

Scott Buchholz, director, Deloitte Consulting LLP
Scott Buchholz is a technology leader with 20 years of experience in the areas of solution, enterprise, and data architecture; program management; and IT service management. He leads technology-enabled business transformations, from optimization efforts to full lifecycle implementations.

Jon Rice, director, Deloitte Consulting LLP
Jon Rice has over 37 years of experience in all aspects of technology integration from planning to technology migration to methodologies, and specializes in the implementation of technology for large public and private sector organizations.

David Sisk, director, Deloitte Consulting LLP
David Sisk is a leader in Deloitte's US Technology practice. He has extensive experience in the architecture, design, development, and deployment of enterprise applications, focusing on the custom development area.

Thomas Beck, specialist leader, Deloitte Consulting LLP
Thomas Beck is a specialist leader with Deloitte's Systems Integration practice. His focus is on large-scale custom developed applications; specifically on application infrastructure, performance and automation.
Endnotes

Each year, this report analyzes trends in technology put to business use. To be included, a topic should clearly demonstrate its potential to impact businesses in the next 18 to 24 months. We also require a handful of concrete examples that demonstrate how organizations have put the trend to work—either as early adoption of the concept or “bread crumbs” that point toward the fully realized opportunity. Our criteria for choosing trends keeps us on the practical side of provocative, as each trend is relevant today and exhibits clear, growing momentum. We encourage executives to explore these concepts and feed them into this year’s planning cycle. Not every topic warrants immediate investment. However, enough have demonstrated potential impact to justify a deeper look.

Because we focus on the nearer-term horizon, our Technology Trends report typically only hints at broader disruptive technology forces. This year, in collaboration with leading researchers at Singularity University, we have added this section on “exponential” technologies, the core area of research and focus at Singularity University. The fields we chose to cover have far-reaching, transformative impact and represent the elemental advances that have formed technology trends both this year and in the past. In this section, we explore five exponentials with wide-ranging impact across geographies and industries: artificial intelligence, robotics, cyber security, additive manufacturing, and advanced computing.

In these pages we provide a high-level introduction to each exponential—a snapshot of what it is, where it comes from, and where it’s going. Each exponential stems from many fields of study and torrents of research. Our goal is to drive awareness and inspire our readers to learn more. Many of these exponentials will likely create industry disruption in 24 months or more, but there can be competitive opportunities for early adoption. At a minimum, we feel executives can begin contemplating how their organizations can embrace exponentials to drive innovation. Exponentials represent unprecedented opportunities as well as existential threats. Don’t get caught unaware—or unprepared.
My take

Peter H. Diamandis, MD
Co-founder and executive chairman, Singularity University
Chairman & CEO, XPRIZE Foundation
Author, Abundance: The future is better than you think

In 2012 the world experienced what I call “the new Kodak moment.” A moment in time when an exponential technology put a linear thinking company out of business. Kodak, the company that invented the digital camera in 1976, and had grown to a 145,000-person,1 28-billion-dollar global company at its peak, ultimately filed for bankruptcy in 2012 as it was put out of business by the exponential technology of digital imagery. In stark contrast, another company—also in the digital imagery business—called Instagram, was acquired in that same year by Facebook for $1 billion. Instagram’s headcount: 13 employees.

These moments are going to be the norm as exponentially thinking startups replace linear businesses with unprecedented products and services. Although a daunting challenge, exponential technologies offer extraordinary opportunities to the businesses that can keep pace with them.

The lessons learned from Kodak are the consequences of failing to keep up with what I call the “six Ds.” The first D is digitization. Technology that becomes digitized hops on Moore’s Law and begins its march up the exponential growth curve. Like many companies, Kodak was blindsided by the next D—deceptive growth. When a product, such as imagery, becomes digitized, it jumps from a linear path to an exponential trajectory. The challenge is that early exponential doublings are deceptive. The first Kodak digital camera was only 0.01 megapixels. Even though it was doubling every year, when you double 0.01, to 0.02, 0.04, 0.08, 0.16, this doubling of small numbers near zero looks to the mind like linear growth, and is dismissed. It’s only when you continue forward past what is called the “knee of the curve” that it begins to change. Double seven times from “1” and you get to 128. Twenty-three more doublings (a total of 30) gets you to 1 billion. Business leaders often perceive the early stages as slow, linear progress. Until, of course, the trend hits the third D—disruption.

By the time a company’s product or service is disrupted, it is difficult to catch up. Disruptive growth ultimately leads to the last three Ds—dematerialization, demonetization, and democratization, which can fundamentally change the market. The smartphone in your pocket has dematerialized many physical products by providing their virtual equivalents—a GPS receiver in your car, books, music, and even flashlights. Once these equivalents gain market traction, the established product’s commercial value can plummet. It becomes demonetized. iTunes®, for example, is impacting the value of record stores. eBay is doing the same to specialty retailers. Craigslist has stripped newspapers of classified advertising revenue. Once products become dematerialized and demonetized, they become democratized—spreading around the world through the billions of connected devices we carry around.
Many business leaders confront exponentials with a stress mindset. They realize that the odds of survival aren’t great. Babson College noted that 40 percent of the Fortune 500 companies in 2000 didn’t exist 10 years later. However, the other side of the coin is an abundance mindset—awareness of the limitless opportunity. Between now and 2020, the world’s population of digitally connected people will jump from two to five billion. That growth will also add tens of trillions of dollars in economic value.

To land on the opportunity side of the coin and avoid shocks down the road, companies can take two immediate steps:

- **Conduct an impact assessment:** Identify the top five strengths that differentiate your company. Then look at which exponentials could potentially erode those strengths. Also look at the flip side. What are the top five pain points that exponentials could eliminate? How?

- **Evaluate the threat:** Determine how your company’s products or services could be dematerialized or demonetized. Exploiting market adjacencies is a key part of the equation. Google, for example, is focusing on autonomous cars and Microsoft continues to make forays into gaming. The goal is to not only figure out who might disrupt your business’s pond but whose pond your company can disrupt.

Your competition is no longer multinational powerhouses in China or India. Your competition now is the hyper-connected startup anywhere in the world that is using exponential technologies to dematerialize and demonetize your products and services. Someone in New York can upload a new idea into the cloud, where a kid in Mumbai builds on it and hands it off to a Bangladeshi company to handle production and marketing. Companies need to make sure their plans are in sync with this world and its dynamics.

Lastly, companies should consider their strategy in the context of leveraging two types of exponentials: First, pure exponential technologies such as artificial intelligence, synthetic biology, robotics, and 3D printing; and second, what I call “exponential crowd tools”: crowdsourcing, crowdfunding, and prized-based competition incentive models. If companies then marry this portfolio of exponential assets with the understanding that today’s grandest societal and planet challenges are also today’s most promising commercial market opportunities, it can truly be a formula for abundance.
Computer science researchers have been studying Artificial Intelligence (AI) since John McCarthy introduced the term in 1955. Defined loosely as the science of making intelligent machines, AI can cover a wide range of techniques, including machine learning, deep learning, probabilistic inference, neural network simulation, pattern analysis, decision trees and random forests, and others. For our purposes, we focus on how AI can simulate reasoning, develop knowledge, and allow computers to set and achieve goals.

The ubiquity and low-cost access to distributed and cloud computing have fueled the maturity of AI techniques. AI tools are becoming more powerful and simpler to use. This maturity is the first part of the story: how AI is becoming democratized and can be applied across industries, not just in areas such as credit card processing and trading desks, where AI has been gainfully employed for 45 years. The next part of the story focuses on our desire to augment and enhance human intelligence.

We are increasingly overwhelmed by the flood of data in our lives—1.8 zettabytes of information are being created annually. But we are saddled with an ancient computing architecture that hasn’t seen a major upgrade in more than 50,000 years: the brain. We suffer from cognitive biases and limitations that restrict the amount of information we can process and the complexity of calculations we can entertain. People are also susceptible to affectations and social perceptions that can muddy logic—anchoring on first impressions to confirm suspicions instead of testing divergent thinking.

AI can help solve specific challenges such as improving the accuracy of predictions, accelerating problem solving, and automating administrative tasks. The reality is that with the right techniques and training, many jobs can be automated. That automation is underway through many applications in several fields, including advanced manufacturing, self-driving vehicles, and self-regulating machines. In addition, the legal profession is availing itself of AI in everything from discovery to litigation support. DARPA is turning to AI to improve military air traffic control as automated, self-piloted aircraft threaten to overrun air-spaces. In health care, AI is being used in both triage and administrative policies. The world’s first synthetic bacterium was created using AI techniques with sequencing. Energy firms are using AI for micro-fossil exploration in deep oil preserves at the bottom of the ocean. AI can also be leveraged for situational assistance and logistics planning for military campaigns or mass relief programs.

In sum, AI represents a shift, a move from computers as tools for executing tasks to a team member that helps guide thinking and can do work.

Despite these successes, many of today’s efforts focus on specific, niche tasks where machine learning is combined with task and domain knowledge. When we add biologically inspired computing architectures, the ability to reason, infer, understand context, develop evolving conceptual models of cognitive systems, and perform many different flavors of tasks becomes attainable.

In the meantime, AI faces barriers to its widespread adoption. Recognize that in developed nations, its use may encounter obstacles, especially as labor organizations...
fight its increased use and its potential to decrease employment. The ethics of AI are also rightly a focus of attention, including the need for safeguards, transparency, liability determination, and other guidelines and mechanisms that steer toward responsible adoption of AI. But these realities should not curb the willingness to explore. Companies should experiment and challenge assumptions by seeking out areas where seemingly unachievable productivity could positively disrupt their businesses.

Inspired by lectures given by Neil Jacobstein, artificial intelligence and robotics co-chair, Singularity University

Neil Jacobstein co-chairs the artificial intelligence and robotics track at Singularity University. He served as president of Singularity University from October 2010 to October 2011 and worked as a technical consultant on AI research for a variety of businesses and government agencies.

Robotics

Mechanical devices that can perform both simple and complex tasks have been a pursuit of mankind for thousands of years. Artificial intelligence and exponential improvements in technology have fueled advances in modern robotics through tremendous power, a shrinking footprint, and plummeting costs. Sensors are a prime example. Those that guided the space shuttle in the 1970s were the size of foot lockers and cost approximately $200,000. Today, they are the size of a fingernail, cost about 10 cents, and are far more reliable.

Robotics is fundamentally changing the nature of work. Every job could potentially be affected—it’s only a matter of when. Menial tasks were the early frontiers. Assembly lines, warehouses, and cargo bays have been enterprise beachheads of robotics. But that was only the beginning. Autonomous drones have become standard currency in militaries, first for surveillance and now with weapon payloads. Amazon fulfillment centers are largely automated, with robots picking, packing, and shipping in more than 18 million square feet of warehouses. The next frontier is tasks that involve gathering and interpreting data in real time. Eventually these tasks can be replaced by a machine, threatening entire job categories with obsolescence. Oxford Martin research predicts that 45 percent of US jobs will be automated in the next 20 years.

On the not-so-distant horizon, for example, gastroenterologists won’t need to perform colonoscopies. Patients will be able to ingest a pill-sized device with a camera that knows what to look for, photograph and, potentially, attack diseases or inject new DNA. Boston Dynamics is rolling out Big Dog, Bigger Dog, and Cheetah—robots that can carry cargo over uneven terrain in dangerous surroundings. Exoskeletons can create superhuman strength or restore motor functions in the disabled. Remote health care is coming. It will likely arrive first with robotics-assisted virtual consultation, followed by surgical robots that can interpret and translate a surgeon’s hand movements into precise robotic movements thousands of miles away. Companies are also pursuing autonomous cars. Personal drone-based deliveries could disrupt retail. The limits are our imaginations—but not for long.

Robotics should be on many companies’ radars, but businesses should expect workplace tension. To ease concerns, companies should target initial forays into repetitive, unpleasant work. Too often robotics is focused on tasks that people enjoy. Equally important, companies should prepare for the inevitable job losses. Enterprises should identify positions that aren’t likely to exist in 10 years, and leverage attrition and training to prepare employees for new roles. The challenge for business—and society as a whole—is to drive job creation at the same time that technology is making many jobs redundant. Ideally, displaced resources can be deployed in roles requiring creativity and human interaction—a dimension technology can’t replicate. Think of pharmacists. After as much as eight years of education, they spend the majority of their
time putting pills into bottles and manually assessing complex drug interactions. When those functions are performed by robots, pharmacists can become more powerful partners to physicians by understanding a patient's individual situation and modifying drug regimens accordingly.

At the end of the day, there are two things robots can't help us with. The first is preservation of the human species, a concern more civic and philosophical than organizational. But the second is more practical—indefinable problems. For example, robots can't find life on Mars because we don't know what it might look like. Everything else is fair game. Be ready to open the pod bay doors of opportunity—before your competition does.

Inspired by lectures given by Dan Barry, artificial intelligence and robotics co-chair, Singularity University

Dan Barry is a former NASA astronaut and a veteran of three space flights, four spacewalks, and two trips to the International Space Station. He is a licensed physician and his research interests include robotics, signal processing with an emphasis on joint time-frequency methods, and human adaptation to extreme environments.

Cyber security

A few hundred years ago, a robbery consisted primarily of a criminal and an individual victim—a highly personal endeavor with limited options for growth. The advent of railroads and banks provided opportunities to scale, allowing marauders to rob several hundred people in a single heist. Today, cyber criminals have achieved astonishing scale. They can attack millions of individuals at one time with limited risk and exposure.

The same technological advances and entrepreneurial acumen that are creating opportunities for business are also arming the world’s criminals. Criminal organizations are employing an increasing number of highly educated hackers who find motivation in the challenges of cracking sophisticated cyber security systems. These entrepreneurial outlaws are a new crime paradigm that is reaching frightening levels of scale and efficiency.

A few examples illustrate the daunting landscape: Hackers are available for hire online and also sell software capable of committing their crimes. A few years ago, for example, INTERPOL caught a Brazilian crime syndicate selling DVD software that could steal customer identities and banking information. The purveyors guaranteed that 80 percent of the credit card numbers pilfered through the software would be valid. Its customers could also contact a call center for support.

Cyber criminals are also leveraging the crowd. Flash Robs, for example, are becoming a new craze where social media is used to bring individuals to a specific store to steal goods before police can arrive. Another crowdsourced crime looted $45 million from a pre-paid debit card network. Hackers removed the card limits. Thieves then bought debit cards for $10 and withdrew what they wanted. In just 10 hours, the crowd made more than 36,000 withdrawals in 27 countries.

What looms on the horizon is even more daunting. With the Internet of Things, every car, consumer appliance, and piece of office equipment could be linked and ready for hacking. As fingerprints become the standard means of authentication, biometrics will become a powerful source of ingenious theft.

The experience of the US Chamber of Commerce portends the future. The organization’s copiers, like many, are equipped with hard drives that store printed documents. In the past, industrial criminals disguised as repairmen removed the devices. However, when the chamber installed thermostats connected to the Internet, hackers could breach the copiers. Officials only discovered the attack through a defect that inadvertently sent the hackers’ documents to the copiers.

There are steps that companies can take to combat cybercrime. The first is to establish risk-prioritized controls that protect against
known and emerging threats while complying with standards and regulations. Companies should also identify which of their assets would likely attract criminals and assess the impact of a theft or breach. Organizations should then become vigilant and establish situation risk and threat awareness programs across the environment. Security and information event management capabilities can be enhanced and new functionality can be mined from tools including endpoint protection, vulnerability assessment/patch management, content monitoring, data loss prevention, intrusion prevention, and core network services. The final step is building resilience: the ability to handle critical incidents, quickly return to normal operations, and repair damage done to the business.

Companies can also turn to the crowd. Security professionals have knowledge that can help investigations and warn of potential threats. The legal environment is also important. Business leaders should advocate for laws and policies that seek to contain cybercrime and also avail themselves of resources provided by federal agencies.

Cybercrime is accelerating at an exponential pace. In the not-so-distant future, everything from our watches to the EKG monitors in hospitals will be connected to the Internet and ready to be hacked. Companies should be prepared to survive in an environment where these threats are commonplace.

Additive manufacturing

The technology that supports additive manufacturing, or 3D printing, is more than 30 years old. Its recent popularity has been fueled in part by patent expirations which are driving a wave of consumer-oriented printers. Prices have fallen, putting the technology within the reach of early adopters. 3D printing is democratizing the manufacturing process and bringing about a fundamental change in what we can design and what we can create.

But the story goes much deeper than hobbyists and desktop models. The cost of a 3D printer ranges from a few hundred to a few million dollars. The machines can print with hundreds of materials, including nyons, plastics, composites, fully dense metals, rubber-like materials, circuit boards, and even genetic tissue. Breakthroughs in speed, resolution, and reliability demonstrate potential not only for scale but also for unlocking new possibilities.

The real exponential impact, however, is in the simplicity of the supporting tools. They provide a means to digitize existing objects, customize and tweak open source designs, or create brand new designs based on structural and industrial engineering know-how. Intuitive, easy-to-use tools allow “things” to be created, manipulated, and shared.

In essence, 3D printing makes manufacturing complexity free of charge, allowing otherwise impossible designs to be realized. Objects are built one layer at a time, depositing material as small as 100 nanometers exactly where and when needed. Mechanical items with moving parts can be printed in one step—no assembly required. Interlocking structures mimicking nature’s design laws are possible with nearly unlimited geometrical freedom—no tooling, set-ups, or change-overs. Moreover, objects can be built just in time when and where they are needed. The capability unlocks business performance in a highly sustainable manner by reducing inventory, freight, and waste. 3D printing’s value is not limited to complex objects.
On-site creation of investment castings or construction molds can supplement traditional manufacturing techniques.

3D printing is not just for prototypes and mock-ups. Many sectors already use the technology for finished parts and products. The aerospace industry, for example, has led the charge on additive manufacturing. Jet engine parts such as manifolds require more than 20 pieces that are individually manufactured, installed, welded, grinded, and tested into a finished product. The 3D printed alternative is easier to build and service and also reduces overall system weight. Medical devices use 3D printing to customize and personalize everything from dental crowns to hearing aids to prosthetics.

The potential doesn’t end there. More fantastical use cases are starting to become a reality, such as mass customization of consumer goods, including personalized products ranging from commodities to toys to fashion, with “print at home” purchase options. Even food printers are entering the market, starting with chocolates and other sugar and starch staples, but moving toward meats and other proteins. Organs, nerves, and bones could be fully printed from human tissue, transforming health care from clinical practice to part replacement—and even life extension. Leading thinkers are exploring self-organizing matter and materials with seemingly magical properties. One example is already here: a plane built of composites with the ability to morph and change shape, ending the need for traditional flaps and their associated hydraulic systems and controls.

The enterprise implications are many—and potentially profound. First, organizations should take an honest look at their supply chain and market offerings—and identify where the technology could enhance or replace these offerings. As we discussed in the Digital engagement chapter, intellectual property and rights issues will emerge, along with new paths to monetize and disrupt. Finally, business leaders should embrace the democratized creativity the technology is unleashing. Companies can use 3D printing to drive faster product innovation cycles, especially where it can push the boundaries of possibilities based on materials science and manufacturing techniques.

Inspired by lectures given by Avi Reichental, co-chair for nanotechnology and digital fabrication, Singularity University

Avi Reichental currently serves as faculty co-chair of the additive manufacturing program at Singularity University. He has been the president and chief executive officer of 3D Systems since September 2003.

Advanced computing

Advances in raw computing power and connectivity are frequently the building blocks of our annual tech trends report. Core lessons that have guided us through the Internet revolution remain true today, and are steering us toward exponential advances in the future of computing.

The first lesson is the importance of early adopters and how they personally and commercially kick-start industries and adoption. Early adopters have an insatiable demand for improvement and for the doubling of performance. Moore’s Law forecasts how many transistors per dollar could be put onto a chip wafer. Engineering curiosity and scientific prowess have fueled many advances in the field. Nonetheless, to build growth and feed customer demand, companies continue to invest in seismic performance improvements because they know there is a demand for products that are twice as good.

The second lesson is an open, hackable ecosystem with a cost contract that encourages experimentation through its lack of incremental accounting for network usage. From the system kits of the PC revolution to the open source movement to today’s Arduino and Raspberry Pi hobbyists, a culture of innovation and personal discovery is driving
advances in open groups instead of proprietary labs. Lessons and learnings are being shared that accelerate new discoveries.

The third lesson is that the magical ingredient of the Internet is not the technology of packet switching or transport protocols. The magic is that the network is necessarily “stupid,” allowing for experimentation and new ideas to be explored on the edges without justifying financial viability on day one.

On the computing side, we are at a fascinating point in history. Rumblings about the end of Moore’s Law are arguing the wrong point. True, chip manufacturers are reaching the theoretical limits of materials science and the laws of physics that allow an indefinite doubling of performance based on traditional architectures and manufacturing techniques. Even if we could pack in the transistors, the power requirements and heat profile pose unrealistic requirements. However, we have already seen a shift from measuring the performance of a single computer to multiple cores/processors on a single chip. We still see performance doubling at a given price point—not because the processor is twice as powerful, but because twice the number of processors are on a chip for the same price. We’re now seeing advances in multidimensional chip architecture where three-dimensional designs are taking this trend to new extremes. Shifts to bio and quantum computing raise the stakes even further through the potential for exponential expansion of what is computationally possible. Research in the adjacent field of microelectromechanical systems (MEMS) and nanotech is redefining “hardware” in ways that can transform our world. However, like our modest forays into multi-core traditional architectures, operating systems and software need to be rewritten to take advantage of advances in infrastructure. We’re in the early days of this renaissance.

The network side is experiencing similar exponential advances. Technologies are being developed that offer potentially limitless bandwidth at nearly ubiquitous reach. Scientific and engineering breakthroughs include ultra-capacity fiber capable of more than 1 petabit per second to heterogeneous networks of small cells (micro-, pico-, and femtocells) to terahertz radiation to balloon-powered broadband in rural and remote areas.

Civic implications are profound, including the ability to provide education, employment, and life-changing utilities to the nearly five billion people without Internet access today. Commercially, the combination of computing and network advances enable investments in the Internet of Things and synthetic biology, fields that also have the ability to transform our world. Organizations should stay aware of these rapidly changing worlds and find ways to participate, harness, and advance early adoption and innovation at the edge. These lessons will likely hold true through this exponential revolution—and beyond.

Inspired by lectures given by Brad Templeton, networks and computing chair, Singularity University

Brad Templeton is a developer of and commentator on self-driving cars, software architect, board member of the Electronic Frontier Foundation, Internet entrepreneur, futurist lecturer, and writer and observer of cyberspace issues. He is noted as a speaker and writer covering copyright law, political and social issues related to computing and networks, and the emerging technology of automated transportation.
Authors

Bill Briggs, director, Deloitte Consulting LLP

Bill Briggs is the chief technology officer of Deloitte Consulting LLP and global lead of Deloitte Digital. He helps clients address their technology challenges—and anticipate the impact that new and emerging technologies may have on their business in the future.

With contributions from Singularity University faculty and leadership and Marcus Shingles, principal, Deloitte Consulting LLP.
Endnotes

2. Tech Trends 2014 is an independent publication and has not been authorized, sponsored, or otherwise approved by Apple, Inc.

Authors

Bill Briggs
Chief technology officer
Director, Deloitte Consulting LLP
wbriggs@deloitte.com

Disruptors

CIO as venture capitalist
Tom Galizia, principal, Deloitte Consulting LLP
tgalizia@deloitte.com

Chris Garibaldi, principal, Deloitte Consulting LLP
cgaribaldi@deloitte.com

Cognitive analytics
Rajeev Ronanki, principal, Deloitte Consulting LLP
rronanki@deloitte.com

David Steier, director, Deloitte Consulting LLP
dsteier@deloitte.com

Industrialized crowdsourcing
Marcus Shingles, principal, Deloitte Consulting LLP
mshingles@deloitte.com

Jonathan Trichel, principal, Deloitte Consulting LLP
jtrichel@deloitte.com

Digital engagement
Christine Cutten, principal, Deloitte Consulting LLP
ccutten@deloitte.com

Barbara Venneman, principal, Deloitte Consulting LLP
bvenneman@deloitte.com

Wearables
Shehryar Khan, principal, Deloitte Consulting LLP
khans@deloitte.com

Evangeline Marzec, specialist master, Deloitte Consulting LLP
emarzec@deloitte.com

Enablers

Technical debt reversal
Scott Buchholz, director, Deloitte Consulting LLP
sbuchholz@deloitte.com

David Sisk, director, Deloitte Consulting LLP
dasisk@deloitte.com

Social activation
Dave Hanley, principal, Deloitte Consulting LLP
dhanley@deloitte.com

Alicia Hatch, principal, Deloitte Consulting LLP
ahatch@deloitte.com

Cloud orchestration
Andy Main, principal, Deloitte Consulting LLP
amain@deloitte.com

John Peto, principal, Deloitte Consulting LLP
jpeto@deloitte.com

In-memory revolution
Mike Brown, principal, Deloitte Consulting LLP
mikbrown@deloitte.com

Doug Krauss, specialist leader, Deloitte Consulting LLP
dkrauss@deloitte.com

Real-time DevOps
Ayan Chatterjee, principal, Deloitte Consulting LLP
aychatterjee@deloitte.com

Alejandro Danylyszyn, principal, Deloitte Consulting LLP
adanylyszyn@deloitte.com

Exponentials
Bill Briggs, Chief technology officer
Director, Deloitte Consulting LLP
wbriggs@deloitte.com

With contributions from Singularity University faculty and leadership and Marcus Shingles, principal, Deloitte Consulting LLP.
Contributors

Aaron Sotelo, Abdi Goodzari, Adarsh Gosu, Amy Bergstrom, Andrew Luedke, Angel Vaccaro, Ann Perrin, Antonio Caroprese, Chad Clay, Chrissy Weaver, Dan LaCross, Dan McManus, Daniel Ledger, Daryl Jackson, Dennis Startsev, Derik Quinn, Ed Panzarella, Elizabeth Rielly, George Collins, Gina Marchlowska, Irfan Saif, Jarrod Phipps, Jeff Powrie, John Daab, John Keith, John Stefanchik, John Sprouse, Jon Wiesner, Justin Darlington, Junko Kaji, Kevin Shelat, Keith Zalaznik, Kevin Weier, Kumar Chebrolu, Lisa Iliff, Maria Gutierrez, Martin Hougaard, Matt Lennert, Missy Hyatt, Navin Advani, Nicole Leung, Oliver Page, Paul Krein, Paul Roma, Paul Toler, Prabhu Kapaleeswaran, Rajeswari Chandrasekaran, Ram Venkateswaran, Rithu Thomas, Robert Kasegrande, Sandy Ono, Steven Bailey, Steven Shepley, Tara Newton, Travis Budisalovich, Trey McAdams, Troy Bishop, Vladimir Baranek, Yu Zhu

Research

Leads: Tom Carroll, Chris Chang, Tore Dvivik, Justin Franks, Thomas Gleason, Rui He, Thomas Henry, Karthik Kumar, Nicole Leung, Simy Matharu, Abhishek Mishra, Jose Munoz, Paridhi Nadarajan, Akshai Prakash, Fatema Samiwala, Jeremy Young

Team Members: Jacob Artz, Anwar Ayub, Rachel Belzer, Simeon Bochev, Kevin Bojarski, Mark Brindisi, Alex Carlon, Felix Cheng, Judy Chiu, Eugene Chou, Ian Clasbey, Kyle Collins, Kevin Craig, Brian Cusick, Philip Davis, Michael Davis, Jefferson DeLisio, Zach Epstein, Inez Foong, Marjorie Galban, Leki Gawor, Rachana Gogate, Calvin Hawkes, Taylor Hedberg, Dan Heinitsch, Dan Henebery, Seimi Huang, Sam Jamison, Simon Jo, Solomon Kassa, Rebecca Kim, Ryo Kondo, Adrian Kosciak, Ashish Kumar, Varun Kumar, Corey Lian, Alyssa Long, Pulkit Maheshwari, Ryan Malone, Tyler Martin, David Melnick, Akhil Modi, Alice Ndikumana, Kashaka Nedd, Brittany Neisewander, Ryan Pallathra, Aaron Patton, Lee Reed, Talal Rojas, Tammy Ross, Jaclyn Saito, Hugh Shepherd, Will Shepherdson, Andrea Shome, Kylene Smart, Sam Soneja, Gayathri Sreekanth, Xenia Strunnikova, Lindsey Tsuya, Peter Van, Jordan Weyenberg, Jenny Zheng
Special thanks

Mariahna Moore—for being the heart, soul, and “buck” of this year’s report—where every detail started and stopped, big or small. Your tireless leadership, spirit, and drive are truly inspirational and a singular reason we hit every ambition without compromising seemingly impossible deadlines.

Cyndi Switzer, Stuart Fano, Jill Gramolini, Kelly Ganis, and Heidi Boyer—the veteran dream team that makes Technology Trends a reality. Your passion, creativity, and vision continue to take the report to new heights. And your dedication, energy, and commitment never cease to amaze.

Dana Kublin, Mark Stern, and Elizabeth Rocheleau—for the tremendous impact made in your first year Tech Trending—from the phenomenal infographics to coordinating our volunteer army to jumping into the content fray.

Finally, a special thanks to Mark White, the founder of our Technology Trends report series and an invaluable contributor, mentor, and friend. Thanks for all of your continued support as we build on your legacy.
Recent Deloitte thought leadership

The Deloitte CIO Survey 2013
www.deloitte.co.uk/ciosurvey

2014 Technology Media & Telecommunications Predictions
www.deloitte.com/predictions2014

From Exponential Technologies to Exponential Innovation
http://dupress.com/articles/from-exponential-technologies-to-exponential-innovation/

Institutional Innovation: Creating smarter organizations to scale learning
http://dupress.com/articles/institutional-innovation/
Public Sector Authors

Paul Krein
Specialist Leader, Deloitte Consulting LLP
pkrein@deloitte.com

Disruptors

CIO as venture capitalist
Kristen Miller, principal, Deloitte Consulting LLP
kmiller@deloitte.com
Van Hitch, specialist leader, Deloitte Consulting LLP
vhitch@deloitte.com

Cognitive analytics
Aditya Padha, principal, Deloitte Consulting LLP
apadha@deloitte.com
Avijeet Sinha, principal, Deloitte Consulting LLP
avisinha@deloitte.com

Industrialized crowdsourcing
JR Reagan, principal, Deloitte & Touche LLP
jreagan@deloitte.com | @IdeaXplorer
Eric Bristow, director, Deloitte Consulting LLP
ebristow@deloitte.com

Digital engagement
Scott Large, director, Deloitte Consulting LLP
slarge@deloitte.com
Pat Nigro, director, Deloitte Financial Advisory Services LLP
pntagro@deloitte.com

Wearables
Brett Loubert, principal, Deloitte Consulting LLP
bloubert@deloitte.com
Carmen Medina, specialist leader, Deloitte Consulting LLP
camedina@deloitte.com | @milouness
Christian Doolin, senior consultant, Deloitte Consulting LLP
cdoolin@deloitte.com | @chinchilla3000

Enablers

Technical debt reversal
Rick Clark, director, Deloitte Consulting LLP
riclark@deloitte.com
Randy Covert, specialist leader, Deloitte Consulting LLP
rcovert@deloitte.com

Social activation
Robert Capuano, director, Deloitte Consulting LLP
rcapuano@deloitte.com
Tony Demarinis, director, Deloitte Consulting LLP
tdemarinis@deloitte.com
Steve Lunceford, specialist leader, Deloitte Consulting LLP
slunceford@deloitte.com | @dslunceford

Cloud orchestration
Gregg “Skip” Bailey, director, Deloitte Consulting LLP
gbailey@deloitte.com
Paul Krein, specialist leader, Deloitte Consulting LLP
pkrein@deloitte.com | @pkrein

In-memory revolution
Joseph Antous, director, Deloitte Consulting LLP
jantous@deloitte.com
Derick Masengale, director, Deloitte Consulting LLP
dmasengale@deloitte.com

Real-time DevOps
Scott Buchholz, director, Deloitte Consulting LLP
sbuchholz@deloitte.com
Jon Rice, director, Deloitte Consulting LLP
jonrice@deloitte.com
David Sisk, director, Deloitte Consulting LLP
dasisk@deloitte.com
Thomas Beck, specialist leader, Deloitte Consulting LLP
thbeck@deloitte.com
Public Sector Contributors

Richard Adler, Dr. Gregg (Skip) Bailey, Kevin Chrapaty, Chad Clay, Gen. Peter Cuvielo - USA (Ret.), Hon. Tom Davis, Craig Hagmaier, Radm. David Glenn - USCG (Ret.), Van Hitch, Missy Hyatt, Paul Krein, Roy Mathew, Mariahna Moore, Mark White

State of Michigan Team – David Behen, Rod Davenport, Lynn Draschil, Tiziana Galeazzi, Andris Ozols, Eric Swanson

U.S. Department of the Interior Team – Bernard Mazer, Kevin Fossett

Public Sector Research

Samy Abidi, Andrew Andreae, Jacob Artz, Suzanne Love-Beck, Rachel Bruns, Suzannah Carrington, Annette Evans, Clayton Frick, Nathan Holst, Joy Ignacio, Ron Kardoso, Samra Kasim, Gina Marchlowska, Elizabeth McCue, Prem Madhukar Patha, Mark Waks

Public Sector Editors

Chad Clay, Lisa Enderle, Missy Hyatt, Paul Krein, Pamela Merritt, Rick Pfeister

Public Sector Special Thanks

Paul Krein and Rick Pfeister—for leading the charge throughout.
Stay connected with technology trends:

Subscribe to receive technology-related communications
www.deloitte.com/us/CIOSubscribe

Subscribe to the Dbriefs webcast series for technology executives
www.deloitte.com/us/techdbriefs

Other trends reports:

Analytics Trends 2014
www.deloitte.com/us/analyticstrends

Global Human Capital Trends 2014
www.deloitte.com/us/HRSubscribe

Business Trends 2014: Navigating the next wave of globalization
www.deloitte.com/us/SOperspectives
About Deloitte University Press
Deloitte University Press publishes original articles, reports and periodicals that provide insights for businesses, the public sector and NGOs. Our goal is to draw upon research and experience from throughout our professional services organization, and that of coauthors in academia and business, to advance the conversation on a broad spectrum of topics of interest to executives and government leaders.

Deloitte University Press is an imprint of Deloitte Development LLC.

This publication contains general information only, and none of Deloitte Touche Tohmatsu Limited, its member firms, or its and their affiliates are, by means of this publication, rendering accounting, business, financial, investment, legal, tax, or other professional advice or services. This publication is not a substitute for such professional advice or services, nor should it be used as a basis for any decision or action that may affect your finances or your business. Before making any decision or taking any action that may affect your finances or your business, you should consult a qualified professional adviser.

None of Deloitte Touche Tohmatsu Limited, its member firms, or its and their respective affiliates shall be responsible for any loss whatsoever sustained by any person who relies on this publication.

About Deloitte
Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee, and its network of member firms, each of which is a legally separate and independent entity. Please see www.deloitte.com/about for a detailed description of the legal structure of Deloitte Touche Tohmatsu Limited and its member firms. Please see www.deloitte.com/us/about for a detailed description of the legal structure of Deloitte LLP and its subsidiaries. Certain services may not be available to attest clients under the rules and regulations of public accounting.

Copyright © 2014 Deloitte Development LLC. All rights reserved.
Member of Deloitte Touche Tohmatsu Limited