Blockchain
Legal implications, questions, opportunities and risks
May 2019
Introduction

Blockchain is increasingly in the news, but still primarily as the underlying software used for cryptocurrencies such as Bitcoin. Many businesses have yet to realise its potential and the extensive ways in which blockchain can be used to make processes more efficient or to develop new service offerings but, momentum is gathering as its applications are more widely understood.

Decentralised technologies such as blockchain are expected to be the next big wave, comparable in many people’s eyes to the transformation that followed the development of the internet, so a basic understanding of blockchain is essential.

However, users need to be very clear about the legal implications, risks and opportunities that blockchain presents, as well as its relative immaturity and current technological limitations, including capacity.
What is blockchain?

At its simplest, blockchain involves recording information in a way that creates trust in the information recorded. The blockchain software is used to synchronise data stored in a distributed manner among peers on all the computers or servers (nodes) participating in a particular network. This allows for multiple records of identical data. Trust is created because all the nodes in the network control, check and consent to any additions or changes to what is recorded. Blockchain can be used for record keeping, transferring value (via cryptocurrencies or otherwise) and smart contracts to automatically execute a transaction when one or more of the preconditions are met.

Once stored on the blockchain, the data cannot be manipulated or changed – it is immutable. Every block contains a unique summary of the previous block in the form of a secure hash value – think of the way jigsaw puzzle pieces fit together – and because each block is connected, the timing, order and content of transactions cannot be altered and blocks cannot be replaced unless all the nodes agree with the proposed change.

Immutability

As a distributed ledger containing immutable data, a blockchain can be trusted as a single source of truth. But what does immutability mean in practice? That the piece of information was included in the blockchain at some verifiable point in the past – not necessarily that the information is correct. The garbage in, garbage out principle is as applicable here as with any other process, the difference being that we cannot go back and correct the mistake. It can only be corrected by adding another block to the chain with the consent of all the participants.

A blockchain records tangible and intangible assets and obligations between a network of peers using the same software, algorithms and cryptography to maintain the records. These assets and obligations can then be transferred between participants with the consent of all other nodes. A blockchain allows participants to share data and code without the need for intermediaries to operate or maintain the service. All parties share the same data, which is replicated across all the nodes in the network. The records included in the blockchain are immutable (even if they are wrong) and provide an unchangeable, time-stamped audit trail.
Blockchain is considered disruptive because it is transparent and eliminates the need for intermediaries and other third parties while being both safe (in terms of security and trust) and cost efficient (thanks to disintermediation). However, each of these characteristics is open to challenge – can a network be said to be transparent when its participants hide behind pseudonyms? Until law and regulation catches up, some transactions are impossible without the involvement of a third party to validate or perfect the transaction. Coding flaws may compromise the safety of a blockchain, and cost efficiency is open to question when the volume of computing power used in a highly distributed network is taken into account.

Applications

There are various use cases enabled by blockchain. These include tokenisation to protect sensitive data; time-stamping because of blockchain’s immutability; serving as a payment channel that enables the transfer of assets and liabilities and, as discussed below, facilitating smart contracts, which is of greatest interest to lawyers.

Blockchain technology has been used either to render processes more efficient by replacing existing components or to provide a new service using blockchain as its backbone. The most popular example of this is the much discussed cryptocurrency. However, its use is being explored across a range of industries, including aviation (where smart contracts are easing clearing between airlines), ticket agents and banks, mining (to create a blockchain-based virtual marketplace), transport (with virtual passports for locomotives), oil and gas (to monitor good corporate governance of affiliates and financial services in a variety of ways, from clearing to loyalty programmes).

Locally, the South African Reserve Bank has completed ‘Project Khokha’, a proof of concept designed to simulate a ‘real-world’ trial of a Distributed Ledger Technology (DLT) based wholesale payment system. (Reference: South African Reserve Bank Press Statement 20062018).

Right the first time

Since blockchain records are immutable, it is essential that the technical requirements are established up front depending on the number of processes that will be executed on the blockchain and the amount of logic required. It is also necessary to understand the legal implications of the use to which the blockchain will be put. Disintermediation allows for the speed of transactions to be increased and the cost reduced. However, the intermediaries who are being excluded from these transactions may have performed valuable functions beyond simply recording a transaction. This includes protecting the interests of the parties to the transaction and third parties, and fulfilling the regulatory tasks without which the transactions are invalid or illegal.

For example, it may be technically possible to transfer the ownership of a house from one participant in a blockchain to another, but in many jurisdictions it is not legally valid without registering the transaction on the national cadastre. Consequently, legal input is essential to understand what requirements must be fulfilled or avoided, and any regulatory frameworks – such as data protection and anti-money laundering provisions – must be complied with. These may necessitate the ongoing involvement of third parties until the law catches up with blockchain.

Data protection

Data protection is a hot topic and a key challenge for those using blockchain. Natural persons already have the right to be forgotten, to have personal data deleted or corrected. Where personal data is recorded in a blockchain, who is responsible for protecting that data and any regulatory frameworks – such as the General Data Protection Regulation (GDPR), which is effective from 25 May 2018.

In a permissioned blockchain this could be the super-user as data controller, in a permissionless blockchain it would potentially be every member of the network. As a natural person, how do I get my data deleted or corrected if I cannot identify the data controller(s) using pseudonyms, and how can my data be removed from an immutable record?
As such, the name smart contracts is a misnomer. They are neither smart (there is no cognitive component, simply automatic execution once a precondition is fulfilled), nor a contract in a legal sense. Taking our earlier example, were ownership of a house to be recorded in a blockchain, it would be possible to transfer ownership to another party within the network. But, based on the smart contract alone, would that transfer be legally valid or are other formalities outside the blockchain required to perfect the transaction?

The “if...” component of the smart contract relies on data from outside of the blockchain provided by an “oracle” – which could be a database or a person – providing confirmation that the precondition has been fulfilled. A smart contract is reactive and only as smart as the self-executing code on which it is based and the factual accuracy of the data input by the oracle. Where data is automatically obtained and input from a reliable source, its accuracy may be relied upon. For example, a smart insurance contract might have as its oracle a database of meteorological statistics. If the database records a storm or drought (as defined in the insurance contract) occurring, then insurance payouts are automatically triggered. Where the oracle is a person inputting data manually there is obviously a risk of human error. In the event of error in the coding, the result may be wrong regardless of the accuracy of the oracle.

Smart contracts are pieces of code that execute a transaction when a precondition occurs (“if it is the first of the month, then my insurance premium is paid”).
Legal manifestations

A blockchain solution can have a variety of manifestations, some of which could have a legal component.

Among many possible applications, one could use a blockchain solution to record agreements between two or more parties or to record a unilateral act under private law, for the execution and publication of a resolution subject to public law, as a single source of truth (in other words, as proof), for the execution of a legal procedure or judgement subject to different domains of law, for compliance with tax obligations or for the use of suspensive and/or dissolving solutions to legal acts.

Depending on the intention of the parties, more than one of these legal manifestations could be combined in a particular blockchain solution, for instance a blockchain solution that captures the rights of ownership and shares in a work of intellectual property, the licensing, assignment or sale thereof, including cross border royalty tax implications and limitations of use depending on the law within a particular jurisdiction or across multiple jurisdictions.

Depending on the nature of any given transaction, blockchain users will need to consider the implications of a number of legislative instruments for instance, the Consumer Protection Act (CPA), the National Credit Act (NCA) or the Copyright Act, to name a few, when developing a blockchain and maintaining the chain to accommodate legislative amendments across various jurisdictions.

Legal issues

Blockchain participants need to be aware of the legal ramifications of the solution they are using, including public law, private law, criminal law as well as, financial and regulatory law.

Private law

In the private-law domain, there are a host of legal issues to consider when using smart contracts on a blockchain. In the previous example, the issue of liability needs to be addressed if the contract has been misconceived such that it does not achieve the intent of the parties, or the oracles make a mistake or deliberate error. In addition, the parties will need to agree on applicable law, jurisdiction, general principles of proper governance, dispute resolution, privacy and the means of digital identity. Is the contract available in writing as well as code so that the parties know what they are agreeing to? Can the identity of the parties be established with sufficient certainty to render the contract valid? If these challenges are not addressed in advance, despite the parties acting in good faith they may find that they do not actually have a contract, and if problems arise they have not agreed upon means of resolving them.

Competition law issues may arise when dealing with permissioned blockchains and networks of users. How do you guard against anti-competitive behaviour, in such circumstances? How do you balance competing interests?

Public law

From a public-law perspective, there are obviously risks that permissionless blockchains are used for illegal purposes such as money laundering or to take advantage of pseudonymous involvement to get around competition law issues. Participants may be exposed to the "miners" who create new blocks acting irresponsibly or not acting in good faith. Currently there are no specific legal remedies against corrupt miners.

Since smart contracts run on a blockchain, they cannot be manipulated after the event and, as they are self-executing, execution cannot be prevented. If the precondition is met, then the transaction is automatically executed, even if the parties have good reasons for no longer wishing that to be the case.
Combinations

As lawyers and technologists wrestle with these issues, a number of solutions are being explored. One solution is to combine permissioned and permissionless blockchains where components of the proposed transactions require some intervention by a responsible party, such as compliance with Know Your Client regulations. All participants in and users of blockchains and smart contracts in which personal data is exchanged are data controllers and must comply independently with all data protection requirements. All parties that run nodes in the blockchain are data processors and must comply with relevant provisions. This is more easily managed in a permissioned than a permissionless blockchain.

On-versus off-chain

Another solution is to decide what goes on the chain or in the smart contract and what is taken care of off-chain. While it is possible to include provisions as to liability, jurisdiction and other legal aspects in the smart contract. This allows no room to manoeuvre or for interpretation because it is based on conditions. A better solution may be to have a "real" contract stored off the chain, but linked to it with a hash secure value so that the parties can have confidence that the agreed version is the one being relied on by taking advantage of blockchain’s timestamping capability.

In addition to general legal considerations, there are also industry-specific ones such as the Principles for Financial Market Infrastructures for financial services businesses, CE marking in the automotive sector and nature conservation regulations that affect the extractive industries. In some cases it may be possible to build demonstrable compliance into the blockchain while others may require an off-chain solution.

Solutions

Global trade aspects

The ongoing regulatory push for more data – together with other trends, such as controlled free trade, higher border security and integrated border management, accreditation of economic operators and the outsourcing of regulatory functions to them – is leading to higher compliance costs.

In response, parties trading globally need higher supply chain visibility and security – data that is both of high quality and secure, as well as trade compliance systems that can cope with electronic exchange of data. Technology solutions such as blockchain allow businesses to cope with these challenges.

A multi-party solution

Global trade involves a variety of parties beyond the buyer and seller, including the customs and regulatory authorities in the countries of origin and destination, financial institutions, shippers, brokers and insurers. Between those parties there are multiple exchanges of (first- and second-hand) data. As such it presents many opportunities for the implementation of a blockchain to trigger and record invoicing, bills of lading and customs compliance.

Record keeping on blockchain allows parties to trace documents throughout the supply chain: from the beginning, when origin is a determinant of access to free trade agreements and other preferential systems and non-preferential origin claims, and at the end when it can be used to demonstrate compliance with export controls and sanction regimes and to prove the end-use of the goods.
Trade finance application

A blockchain could also be implemented to execute the trade finance process in a transparent and trustworthy manner that minimises the risk of fraud. It would also eliminate the volume of documentation and the time-consuming manual processes that create a drag on the speed with which transactions occur while increasing costs.

Additional considerations

For customs duty purposes, an ideal future state would involve the relevant public authorities being participants in a blockchain with all other parties to a cross-border trading relationship, allowing for automated authorisations and duty payments, which is already envisaged by article 185 of the Union Customs Code. This would enable an enhanced and more effective “Single Window,” providing every party to the transaction with transparency into its progress and compliance. While implementing a blockchain offers many benefits to those involved in global trade, there are undeniable risks and barriers that must first be mitigated or overcome. These include addressing data privacy and security concerns, gaining the commitment of all parties to the transaction to maximise the benefits, understanding the level of financial and technological commitment required to implement and operate the blockchain, and accounting for prior registration requirements with the relevant government bodies.

Using blockchain in a supply chain allows complete traceability of a product’s origin and final recipient. By way of a simple example, at the factory where a drug is manufactured which can be recorded using RFID, barcode or other technology. This is registered in the first block in the chain. Having checked against block one, the second block would record the drug’s updated status as it is moved to a warehouse. Permissions built into the blockchain would limit its onward sale to approved trading partners. Having checked the validity to date as recorded in the earlier blocks, block three would update the drug’s status again as it is received at its final destination.

Future opportunities

In future, as the technology matures, capacity issues are addressed and the law catches up, we can expect to see complete global trade supply chains using blockchain, with participation from the authorities to monitor transactions and compliance with rules of origin, customs declarations and duty payments and sanctions rules. Combining blockchain with the IoT will enable manufacturers to track and trace batches of product and manage the risk of grey imports within their distribution networks and demonstrate good corporate governance throughout.

Most current blockchain platforms and solutions are not capable of validating transactions in real time. As processing capacity and speed increase this will open up new applications and opportunities for the deployment of blockchain. In the meantime, businesses exploring blockchain applications are starting small, with a focus on one country or process, and learning from these experiments before implementing more widely. At the same time, some participants are taking blockchain issues through the courts to get clarification through binding verdicts that can be relied on in future. While Malta has recently become the first country in the world to pass laws establishing the first regulatory framework for blockchain, cryptocurrency and distributed ledger technology. Over time, international co-ordination and collaboration will be needed to facilitate the greater use of blockchain to manage global trade supply chains and other cross-border uses of the technology.
What is next?

A multi-party solution
Deloitte Legal is involved in the Deloitte Blockchain Institute, which offers an end-to-end portfolio of services from ideation to implementation to make your blockchain vision work. We already have more than 20 prototypes in development and combine our legal, technological, talent, strategy and operations expertise to provide fully integrated blockchain capabilities.

Blockchain is an undeveloped field in both law and business. Our comments are not intended to be exhaustive but rather to present various aspects of blockchain from a legal perspective and the associated issues to keep in mind. We will continue to investigate the many opportunities that blockchain presents as they emerge and exchange ideas as the landscape evolves.

To discuss the legal implications of blockchain implementation in your business contact:

Southern Africa
Navin Sing
Managing Director: Risk Advisory Africa
Mobile: +27 83 304 4225
Email: navinsing@deloitte.co.za

Candice Holland
Risk Advisory Africa Leader: Regulatory
Mobile: +27 82 330 5091
Email: canholland@deloitte.co.za

Michele Townsend
Director: Risk Advisory Africa
Mobile: +27 82 441 7164
Email: mtownsend@deloitte.co.za

Kreeban Govender
Risk Advisory Africa Blockchain
Mobile: +27 83 253 9818
Email: krgovender@deloitte.co.za

Central Africa
Tricha Simon
Risk Advisory Regional Leader: Central Africa
Mobile: +260 973 224 715
Email: trichasimon@deloitte.co.zw

Rodney Dean
Director: Risk Advisory Central Africa
Mobile: +263 867 700 0261
Email: rdean@deloitte.co.zw
+263 867 700 0261

West Africa
Anthony Olukoju
Risk Advisory Regional Leader: West Africa
Mobile: +234 80 5209 0501
Email: aolukoju@deloitte.com.ng

Temitope Aladenusi
Director: Risk Advisory West Africa
Mobile: +234 80 590 6630
Email: taladenusi@deloitte.com.ng

East Africa
Julie Nyang’aya
Risk Advisory Regional Leader: East Africa
Mobile: +254 720 111 888
Email: julyangaya@deloitte.co.ke

Urvi Patel
Director: Risk Advisory East Africa
Mobile: +254 714 056887
Email: ulpatel@deloitte.com.ng