Viewing offline content

Limited functionality available

Dismiss
Deloitte South Africa
  • Services

    What's new

    • Deloitte Digital

    • Deloitte Africa Centre for Corporate Governance

      The Deloitte Africa Center for Corporate Governance offers a number of resources for executives, directors, and others who are active in governance.

    • Corporate Reporting Reform

      View our latest events on corporate reporting reform.

    • Audit & Assurance

      • Audit & Assurance Insights
      • Centre for Corporate Governance
    • Consulting

      • Strategy
      • Customer and Marketing
      • Core Business Operations
      • Human Capital
      • Enterprise Technology & Performance
      • Managed Services
      • Growth Platforms
    • Financial Advisory

      • Mergers & Acquisitions
      • Turnaround and Restructuring
      • Forensics
    • Risk Advisory

      • Internal Control & Assurance
      • Regulatory Risk
      • IT & Specialised Assurance
      • Cyber Risk
      • Analytics
    • Tax & Legal

      • Outsourced Tax Compliance
      • Tax Technology Consulting
      • Tax Advisory and Transactions
      • Mobility, Payroll, Immigration
      • Workforce, Analytics
      • Reward, Employment Tax
      • Legal Services
      • South African Budget
      • Tax News and Trends
    • Deloitte Private

  • Industries

    What's new

    • Deloitte perspectives

      Leadership perspectives from across the globe.

    • Future of Mobility

      Learn how this new reality is coming together and what it will mean for you and your industry.

    • Deloitte Africa Insights

      Access the latest thought leadership on industry insights, country reports and economic developments in Africa.

    • Consumer

      • Automotive
      • Consumer Products
      • Retail, Wholesale & Distribution
      • Transportation, Hospitality & Services
    • Energy & Resources

      • Energy & Chemicals
      • Mining & Metals
      • Power, Utilities & Renewables
      • Industrial Products & Construction
    • Financial Services

      • Insurance
      • Banking & Securities
      • Investment Management
      • Actuarial & Insurance Solutions
      • Real Estate
    • Life Sciences & Healthcare

      • Life Sciences
      • Health Care
      • The Africa Deloitte Health Equity Institute
    • Government and Public Services

      • Infrastructure, Transport & Regional Government
      • Central Government
      • Defence, Security & Justice
      • Health & Human Services
    • Technology, Media & Telecom

      • Technology
      • Media & Entertainment
      • Telecom, Media & Entertainment
      • Predictions
  • Insights

    Deloitte Insights

    What's new

    • Deloitte Insights Magazine

      Explore the latest issue now

    • Deloitte Insights app

      Go straight to smart with daily updates on your mobile device

    • Weekly economic update

      See what's happening this week and the impact on your business

    • Strategy

      • Business Strategy & Growth
      • Digital Transformation
      • Governance & Board
      • Innovation
      • Marketing & Sales
      • Private Enterprise
    • Economy & Society

      • Economy
      • Environmental, Social, & Governance
      • Health Equity
      • Trust
      • Mobility
    • Organization

      • Operations
      • Finance & Tax
      • Risk & Regulation
      • Supply Chain
      • Smart Manufacturing
    • People

      • Leadership
      • Talent & Work
      • Diversity, Equity, & Inclusion
    • Technology

      • Data & Analytics
      • Emerging Technologies
      • Technology Management
    • Industries

      • Consumer
      • Energy, Resources, & Industrials
      • Financial Services
      • Government & Public Services
      • Life Sciences & Health Care
      • Technology, Media, & Telecommunications
    • Spotlight

      • Deloitte Insights Magazine
      • Press Room Podcasts
      • Weekly Economic Update
      • COVID-19
      • Resilience
      • Top 10 reading guide
  • Careers

    What's new

    • Job search

    • Experienced Hires

    • Executives

    • Students

    • Life at Deloitte

    • Alumni

  • ZA-EN Location: South Africa-English  
  • ZA-EN Location: South Africa-English  
    • Dashboard
    • Saved items
    • Content feed
    • Profile/Interests
    • Account settings
    • Subscriptions

Welcome back

Still not a member? Join My Deloitte

3D opportunity for quality assurance and parts qualification

by Ian Wing, Brenna Sniderman
  • Save for later
  • Download
  • Share
    • Share on Facebook
    • Share on Twitter
    • Share on Linkedin
    • Share by email
Deloitte Insights
  • Strategy
    Strategy
    Strategy
    • Business Strategy & Growth
    • Digital Transformation
    • Governance & Board
    • Innovation
    • Marketing & Sales
    • Private Enterprise
  • Economy & Society
    Economy & Society
    Economy & Society
    • Economy
    • Environmental, Social, & Governance
    • Health Equity
    • Trust
    • Mobility
  • Organization
    Organization
    Organization
    • Operations
    • Finance & Tax
    • Risk & Regulation
    • Supply Chain
    • Smart Manufacturing
  • People
    People
    People
    • Leadership
    • Talent & Work
    • Diversity, Equity, & Inclusion
  • Technology
    Technology
    Technology
    • Data & Analytics
    • Emerging Technologies
    • Technology Management
  • Industries
    Industries
    Industries
    • Consumer
    • Energy, Resources, & Industrials
    • Financial Services
    • Government & Public Services
    • Life Sciences & Health Care
    • Tech, Media, & Telecom
  • Spotlight
    Spotlight
    Spotlight
    • Deloitte Insights Magazine
    • Press Room Podcasts
    • Weekly Economic Update
    • COVID-19
    • Resilience
    • Top 10 reading guide
    • ZA-EN Location: South Africa-English  
      • Dashboard
      • Saved items
      • Content feed
      • Profile/Interests
      • Account settings
      • Subscriptions
    18 November 2015

    3D opportunity for quality assurance and parts qualification Additive manufacturing clears the bar

    19 November 2015
    • Ian Wing United States
    • Brenna Sniderman United States
    • Save for later
    • Download
    • Share
      • Share on Facebook
      • Share on Twitter
      • Share on Linkedin
      • Share by email

    Why aren't more manufacturers using 3D printing? One reason is that AM-produced parts and products must be of consistent quality, strength, and reliability, and guarantees have been hard to come by. The good news: A well-planned quality process can solve the problem.

     Introduction

    “One of the most serious hurdles to the broad adoption of additive manufacturing of metals is the qualification of additively manufactured parts.1”

    DUP-1410_interior-image

    Additive manufacturing (AM) produces objects by layering materials such as metals, composites, or polymers to produce a three-dimensional part rather than, for example, machining parts from blocks of raw material, as with conventional manufacturing. However, while companies have widely explored AM’s potential to shrink the scale and scope necessary for manufacturing, bring to life previously impossible designs, and alter the makeup of organizational supply chains,2 several significant hurdles prevent its wider adoption.

    Want to learn more about 3D printing?

    Visit the 3D Opportunity collection

    Register for our upcoming course

    One of the most important barriers is the qualification of AM-produced parts.3 So crucial is this issue, in fact, that many characterize quality assurance (QA) as the single biggest hurdle to widespread adoption of AM technology, particularly for metals.4 Put simply, many manufacturers and end users have difficulty stating with certainty that parts or products produced via 3D printing—whether all on the same printer or across geographies—will be of consistent quality, strength, and reliability. Without this guarantee, many manufacturers will remain leery of AM technology, judging the risks of uncertain quality to be too costly a trade-off for any gains they might realize.5

    DUP-1410_Figure 1. Facets of AM quality

    QA presents a multifaceted challenge, encompassing both the scale and scope of production. Indeed, quality doesn’t just exist on one dimension, and each area should be addressed for parts qualification—and AM’s potential—to be more fully realized. Figure 1 summarizes the major facets.

    In order to address the challenge of certifying quality for AM-produced parts along these four facets, manufacturers can develop capabilities that will enable them to:

    • Identify the level of QA their products need, and what level of risk they are willing to assume
    • Accurately predict whether parts will meet specifications when built under “idealized” conditions
    • Ensure repeatability, consistency, and reliability across different AM machines and geographies
    • Incorporate the appropriate technologies and capabilities necessary to qualify AM-produced parts, based on the target QA level

    Based on a review of the technical literature, we have developed the AM Quality Pyramid to provide an organizational schema through which to approach QA for additively manufactured parts and to describe approaches for accurately predicting quality pre-build, promoting repeatability, and incorporating the technologies necessary for QA.

    In doing so, we argue that not all AM-produced end-use parts will require the same level of QA. Thus, the same robust approach may not be suitable for all organizations. To help manufacturers consider the appropriate QA level, we illustrate a continuum of options, with simple inspection on one extreme and the complete pyramid on the other. By identifying their position along this spectrum, manufacturers can begin to understand the level of QA their products require and, thus, recognize which strategies to use to qualify AM-produced parts.

    The roots of 3D printing go back nearly three decades. Its importance is derived from its ability to break existing performance trade-offs in two fundamental ways: First, AM reduces the capital required to achieve economies of scale; second, it increases flexibility and reduces the capital required to achieve scope.6

    Capital versus scale: Considerations of minimum efficient scale can shape supply chains. AM has the potential to reduce the capital required to reach minimum efficient scale for production, thus lowering the manufacturing barriers to entry for a given location.

    Capital versus scope: Economies of scope influence how and what products can be made. The flexibility of 3D printing facilitates an increase in the variety of products that a unit of capital can produce, reducing the costs associated with production changeovers and customization and, thus, the overall amount of required capital.

    Changing the capital-versus-scale relationship has the potential to change how supply chains are configured, and changing the capital-versus-scope relationship has the potential to change product designs. These impacts present companies with choices on how to deploy AM across their businesses.

    Companies pursuing AM capabilities choose between divergent paths (figure 2):

    Path I: Companies do not seek radical alterations in either supply chains or products, but they may explore AM technologies to improve value delivery for current products within existing supply chains.

    Path II: Companies take advantage of scale economics offered by AM as a potential enabler of supply chain transformation for the products they offer.

    Path III: Companies take advantage of the scope economics offered by AM technologies to achieve new levels of performance or innovation in the products they offer.

    Path IV: Companies alter both supply chains and products in pursuit of new business models.

    DUP-1410_Figure 2. Framework for understanding AM paths and value

    Historically, most firms exploring AM technology fall into path I, using it largely for rapid prototyping and iterative design for parts meant to be manufactured via AM.7 As additive technologies advance, opportunities for their use will continue to grow and may eventually prompt a strategic shift to paths II, III, or IV. A needs-based quality management approach is essential to any such shift, as the ability to qualify and certify parts remains essential to moving to wider use of AM.

    Toward a solution: The AM Quality Pyramid

    Today, firms seeking to qualify AM-produced parts generally apply the same processes used for parts produced by traditional methods: namely, extensive non-destructive and destructive testing of hundreds of copies of the final part.8 This is expensive for any type of production; it also negates many of AM’s identified economic and operational advantages, which include low-volume or one-off printing.9 Thus, the prospect of printing hundreds of parts, one by one, solely for testing can be daunting.

    Unlocking the full potential of AM may necessitate a reversal of the qualification process to which engineers are accustomed.

    Still, some firms find AM’s demonstrated benefits so compelling that they pursue this process anyway, a testament to the value of 3D printing in many instances.10 To make this leap on a wider scale, however, most organizations require a more sustainable, feasible approach to qualifying and certifying parts.

    Thus, a different methodology—one taking AM processes into account—may offer greater benefits. Indeed, unlocking the full potential of AM may necessitate a reversal of the qualification process to which engineers are accustomed: the development of a means to certify AM parts based on design, as well as observations and corrections made during the build process, rather than verifying performance after fabrication.

    To address the differences between AM and conventional processes, the science and engineering community is gravitating toward an AM solution centered on three pillars: QA derived from build planning and build monitoring/inspection, linked together with feedback control, described in table 1.11 Later in this paper, we discuss in detail some of the “intelligent” machine control methods in development meant to preemptively adjust build parameters to avoid situations that increase the risk of defects.

    Table 1. Key elements of quality assurance in AM

    AM pillar Description
    Build planning The use of advanced modeling and simulation to develop a plan for a machine to produce a specific part
    Build monitoring Monitoring with sensors the build process as the part is being constructed
    Feedback control Using data from the build monitoring sensors to iteratively update the build planning process in real time

     

    In addition, several supporting factors underpin build planning, build monitoring, and feedback control—and, by extension, effective QA schemas. These include enabling factors such as standards to guide the process, calibration, raw materials, and a build data “body of knowledge” that enables manufacturers to catalog and leverage past experiences. Deloitte has developed the AM Quality Pyramid to capture these key elements of AM QA and map the ways in which they interrelate and build upon each other (figure 3).

    DUP-1410_Figure-3_pyramid

    The ultimate goal—quality parts—rests at the apex. Directly supporting this goal are the key components necessary for successful QA: build planning and build monitoring, linked by feedback control. Supporting these processes is the third tier, consisting of the enabling factors. Finally, at the base rest information management and information assurance, which underpin the entire QA process; without reliable, accurate data about the design or process, the pyramid cannot remain structurally sound.

    As manufacturers seek to qualify parts, they must first understand and articulate what they are striving for.

    In this section, we explore current research at each level of the pyramid, moving from top-down to illuminate various considerations and approaches relevant to each, along with illustrative examples of ongoing real-world applications.

    It is important to note that this paper does not attempt an exhaustive review of research literature related to the topic of parts qualification or QA for additive manufacturing. Rather, the intent is to provide a few illustrative examples of research in each area; several more detailed reviews are available on this topic.12

    Starting at the top: Defining “quality”

    The most important questions of all must be addressed at the outset of any QA development: What does “quality” look like, and how is it defined in relation to this particular AM process? Without an understanding of what constitutes quality in each particular case, it will be difficult, if not impossible, to develop a consistent approach to achieving it.

    At the same time, however, quality will not—and should not—look the same for every type of part and product. Quality exists on a spectrum and is often contingent on the intended use of the part; a 3D printed action figure is held to a different type of quality control than a component on a fighter jet. In the former case, a difference of a few microns in the geometry of the final part makes little difference; in the latter, it could be a matter of life and death. As manufacturers seek to qualify parts, they must first understand and articulate what they are striving for.

    Furthermore, part quality is more than just the shape of the finished part. Fundamentally, quality is about a part’s ability to perform the task for which it was designed, while maintaining structural integrity. Contributing factors are usually included in a part’s specifications and typically include geometry, surface finish, and material properties (table 2).13

    Table 2. Dimensions of quality

    Quality dimension Definition
    Geometry The shape of the finished part and how it will fit with other parts
    Surface finish The desired smoothness, roughness, or other functional surface treatment of the finished part
    Material properties A variety of attributes, including mechanical strength, stiffness, and fatigue life

     

    Each of these factors depends directly on build process parameters, including raw materials.14 Thus, controlling and assuring the build process—and, by extension, ensuring uniformity among these three criteria—figure strongly in the overall quality of a finished part.

    Build planning: Increasing complexity, growing data requirements

    In most AM applications, a three-dimensional shape is digitally sliced into thin layers, and a tool path15 is defined for each slice to create the part layer by layer.16 Traditionally, part geometry has dominated tool path planning, but achieving quality control in AM involves greater command over parameters beyond geometry. These parameters can include laser power, laser scan speed, and build chamber temperature, to name a few. Each of these factors contributes to the outcome of a build, and aberrations in any could impact final part quality.

    Advanced computational models, which can simulate the physical phenomena associated with AM processes, are useful build-planning tools. Computational models can predict how a part will behave in response to environmental stresses. Consider the example of a passenger jet with engines mounted beneath the wings: Engineers can use simulation to estimate the mechanical stress that the pull of the engines will cause on the wings, without conducting a physical experiment (figure 4).

    DUP-1410_Figure 4. Results of a numerical simulation showing peak stresses on a passenger aircraft in flight, with stress concentrations near the engine mounts, a result of the engines pushing the plane forward

    See endnote 17

    For AM build planning, engineers seek to extend this computational approach to solving the multiphysics process of AM, which includes the mechanics of the part being built, the surface tension of the liquefied metal in the build area, and the way that heat from, for example, a laser is applied and dissipated.18

    Researchers cite more than 130 variables for which designers may need to account in a fully representative simulation, including a wide range of time and length scales.

    And these data points represent merely the tip of the iceberg. Researchers cite more than 130 variables for which designers may need to account in a fully representative simulation, including a wide range of time and length scales.19 These phenomena are complex enough to simulate individually; creating a concurrent model that builds in multiple factors can make the process even more challenging.20 As with the 3D printing process itself, every additional factor adds another layer of modeling complexity. Yet this process represents a foundational area: Accurate simulations are essential for developing build plans that adjust input parameters dynamically to avoid defects and, ultimately, guarantee quality.

    Due to these simulations’ complexity and scale, most computational models are run in high-performance computing facilities, as the wide range of data requirements increases computational load to the point where it approaches current limits of high-performance computing technology.21 Currently, some of the most sophisticated models of AM processes are found at the US National Laboratories, which possess massive computing capabilities.22

    Thus, availability of specialized computing resources becomes a potential limiting factor for QA, as most companies lack ready access to this level of computing power. Fortunately, approaches to clearing this barrier may be materializing: Computing power continues to grow, and some commercially available simulation and software solutions specifically geared toward AM in a production environment, such as 3DSIM’s EXASIM, are emerging.23 The TRUCHAS code, originally developed by Los Alamos National Laboratory to model the casting processes for nuclear fuel rods, provides a trenchant example. TRUCHAS simulates many of the important parameters for modeling the AM process: solid mechanics, multiple types of heat transfer, and the changeover between solid and liquid phases for a metal.24 It is available via open source to anyone with the computing power to use it.

    Aside from computing and data management capabilities, engineers must also consider modeling software and the code that enables calculations. Approaches include open-source code,25 commercial software,26 and proprietary tools developed in-house—dependent on individual organizational needs.27

    Proliferation of computing power has helped lower barriers to entry for complex modeling and may even be setting the stage for in-the-loop computing on the production floor. Given the enormous computing power requirements, it remains a challenge to use existing models in a production environment, although these requirements may become more realistic as computing power increases and more solutions enter the marketplace. A recent National Academies of Sciences Predictive Theoretical & Computational Approaches for Additive Manufacturing Workshop prioritized the development of “reduced order models,”28 which focus on dramatically reducing the computational intensity of simulations by making assumptions to constrain them, and by leveraging already-existing libraries of similar, catalogued features.29

    ADDRESSING COMPUTING AND DATA CHALLENGES

    The physical challenges of guaranteeing quality for AM are substantial and widely accepted. However, equally important—and less often discussed—is the issue of data management. Both build planning and build monitoring add enough data to challenge today’s most advanced high-performance computers. The data requirements are, quite simply, staggering.

    For example, the Accelerated Certification of Additively Manufactured Metals Initiative at Lawrence Livermore National Laboratory runs some of the most sophisticated models of the powder-bed fusion AM processes available today.30 In simulating the builds of relatively small and simple parts at only moderate resolutions, their supercomputer runs routinely produce outputs of hundreds of gigabytes of data, spread over hundreds of thousands of files.31 While the current volume of data is not that challenging, as part volume and simulation resolution both grow, data requirements will increase by orders of magnitude in the near future.

    Video data from process monitoring drives even larger requirements. Berumen et al. describe a technique for monitoring the build process with full-frame video.32 To simultaneously capture the full chamber and provide sufficient detail to resolve the melt pool at a frame rate fast enough to keep up with the motion of the laser results in 1.5 petabytes (1500 TB) of data for the same six-hour build. This volume of data is roughly the equivalent of more than 57 years of high-definition streaming video.33

    Scientists and engineers are innovating in both these areas to reduce data requirements. Leaders in the field of computational modeling for AM describe “reduced order models” which bound the problem and allow various shortcuts.34 Berumen et al. describe a creative solution to the data challenge around video monitoring: use of mirrors to image down the axis of the laser beam, providing a “tracking view” of the melt pool and dramatically reducing the data requirements.35 Although the resulting video data is considerably smaller, this approach still results in a 12.7 TB file for a six-hour build. In some cases, engineers will need to perform this process—with its attendant data requirements—for every part. Further adding to data load, organizations may need to maintain that data for a prescribed amount of time post-build, and be able to access and analyze it on demand.

    In the future, a combination of data reduction techniques such as these, paired with steadily increasing computing power, will help open the door for real-time processing and feedback control.

    Build monitoring: Measuring the build process in real time

    During the parts qualification process, AM build monitoring systems must document the build process to ensure specifications are met.36 Several key sensing modalities can be used to measure relevant parameters, all of which are within reach with today’s technology (table 3).

    Table 3. Examples of measurement modalities

    Sensing modality Function
    Accelerometers Measure vibration of the print head during fused deposition modeling and detect potential anomalies37
    Ultrasound sensors Ensure the final part is free of internal voids, an important capability since voids create stress concentrations that can lead to premature part failure38
    High-resolution photography Allows for near real-time inspection of parts in the build chamber39
    Thermal imaging Monitors size, shape, and relative temperature distribution of the melt pool40
    Pyrometry (photodiode) Measures light intensity at a single point and correlates to temperature41

     

    Together or separately, these technologies can measure multiple aspects of a build. Of principal interest for powder bed-based AM technologies, for example, is the size and temperature of the melt pool, which has been demonstrated to drive microstructure, material properties, surface finish, and overall part performance.42 Measuring the melt pool in near real time can be accomplished with the combination of a calibrated digital infrared camera and a photodiode sensor to measure the intensity of light.

    Such a technique is described in a 2010 joint publication from CONCEPT Laser and Katholieke Universiteit (KU) Leuven in Belgium. This study imaged the melting/resolidification process with high-speed video and a photodiode to estimate melt pool temperature and size over time, and proposes a capability to use sensor information to document the build process for applications with stringent quality requirements.43

    It is important to note the criticality of sensor calibration for this type of measurement. Many factors govern the resolidification process; put very simply, metals subjected to different melt temperatures during the build process will have different strength levels, which could ultimately impact function and quality.44 To this end, another study from the University of Texas’s Keck Center for 3D Innovation described development of a technique that complements the CONCEPT Laser/KU Leuven work: a physics-based method for calibrating infrared cameras to ensure accurate temperature measurements. The research highlights the importance of proper camera calibration in providing accurate monitoring during the build process, and argues that precise temperature readings are essential.45

    Melt pool monitoring data alone is valuable. Measuring these parameters can be used alongside other models to verify microstructure and ultimately guarantee part specifications or, conversely, to identify defects as they occur and stop the build process early. However, a more effective application of such data would be to adjust input parameters in real time when sensors detect non-ideal conditions—a process known as feedback control.

    Feedback control: Linking build planning and build monitoring

    It’s often not enough to detect anomalies. Ideally, systems should be able to take action to correct them. Feedback control refers to the ability to detect build-plan deviations and automatically adjust systems to correct for them. Applying this capability to AM build planning and build monitoring is crucial to achieving QA. Maintaining control over build processes enables manufacturers to achieve the consistent geometries, surface finishes, and material properties that underpin quality.

    Maintaining control over build processes enables manufacturers to achieve the consistent geometries, surface finishes, and material properties that underpin quality.

    Emerging examples of feedback control can illustrate its impact: In one case, researchers at the University of Texas designed a system to modulate laser power and scan rate46 based on the temperature and size of the melt pool, adjusting power accordingly when these attributes changed.47 In a related effort, a team at Pennsylvania State University developed a system to measure temperature at the start of each layer. In the event that the temperature exceeded a predetermined threshold at the planned start location, an algorithm adjusted the process to start building at a lower temperature location.48 And at least one commercially available AM system already offers feedback control, using a thermal camera to measure laser power and scan rate in response to size, shape, and temperature of the melt pool.49 Additionally, we believe several major aerospace and defense firms are finding success in this area as well.

    An illustrative example of feedback control also comes from the KU Leuven group, which demonstrated the effect of simple feedback control based on the temperature of the melt pool, applied to a challenging build: closed overhangs.50 The results show a dramatic increase in the surface integrity of the overhangs.51 (See figure 5.)

    DUP-1410_Figure 5. Experimental results demonstrating the effect of feedback control on a closed overhang with a length or diameter of 5MM—a particularly challenging AM application

    See endnote 52

    As AM technology continues to develop, feedback controls should be tightly integrated with multiphysics simulations used in build planning. Instead of simply controlling conditions to keep the melt pool at a constant size and temperature, sensing systems will report actual readings back to the simulation, which can then recalculate and prescribe an updated build pattern in order to meet the desired specifications.

    Supporting factors: Underpinning the AM Quality Pyramid

    Supporting build planning and build monitoring are multiple factors, including standards, engineering and management controls, and a build data body of knowledge. At the base of the AM Quality Pyramid, information management and information assurance underpin and reinforce the structure.

    Standards

    Maintaining controls over the size, shape, and chemical composition of powders used in AM processes helps ensure consistent results, and standards are emerging to control these factors.53 Standards are also available for destructive and non-destructive evaluation of finished AM parts.54

    Despite these developments, as of October 2015 there are no broadly recognized, published standards for the production of AM parts. The area is, however, evolving rapidly. The American Society for Testing and Materials has designated a committee to define and issue standards for test methods, design, materials, processes, environment, health and safety, terminology, and potentially file formats.55 Ideally, these standards will be applicable in the near future across multiple machines and processes, to help maintain consistency in a variety of situations.56 Working with those who understand this evolving space can help manufacturers get a handle on newly accepted standards and assess how to incorporate them into existing AM approaches—or develop wholly new approaches instead.

    Calibration, maintenance, and raw material quality and handling

    Adopters must develop detailed maintenance and calibration plans for equipment, as well as define guidelines for raw material quality and handling. This represents an important competitive advantage; companies performing well in this area may hold their practices close to the vest. Production managers should carefully consider these factors as they develop and apply engineering and management controls across the AM production environment, perhaps incorporating skills and processes they may already have in place around process design and documentation and error minimization, such as Six Sigma.

    Build data body of knowledge

    The “build data body of knowledge” refers to sharing detailed information about a variety of build situations. In this way, all can learn from collective experiences, advancing QA capabilities as a whole.57 Should one team observe a process defect, sharing technical information about that feature, process, and result via a searchable database can help others avoid the same mistakes. Organizations such as America Makes, the US-based National Additive Manufacturing Innovation Institute, and the EU-based Standardization in AM are using collective knowledge to help drive standardization.58

    Working with those who understand this evolving space can help manufacturers get a handle on newly accepted standards.

    Information management and information assurance

    At the base of the AM Quality Pyramid, information management and information assurance enable the management of design/build information and its protection from unauthorized access or tampering.59 The advancement and proliferation of AM technology is expected to drive considerable data requirements, increasing data generation by orders of magnitude, as this process will need to be repeated for every part and the data must be accessible for analysis on demand. Likewise, the data will need to be transmitted and secured both in advance, to help prevent hacking designs and, afterward, to help prevent corruption and/or loss. A manufacturer’s ability to store, manage, and protect this information is likely to become an important differentiator.

    Addressing the business challenges of quality assurance

    The AM Quality Pyramid offers a complete vision for QA in AM: a point where, through constant and robust monitoring, objects can be printed and certified, at a level of dependability and quality comparable to that of conventional manufacturing. Over time, as AM technology continues to develop and proliferate, many manufacturers will find that a robust QA schema similar to that of the pyramid is likely the approach best suited to their AM production needs.

    They should first ascertain where on the spectrum they fall by developing a deep understanding of the requirements underpinning the need for QA, then develop a means to achieve it in a cost-effective way.

    However, not all manufacturers have need for the same level of consistency, and not all parts warrant the same vigorous level of QA. In these cases, a more modest QA scheme may be appropriate—as well as more cost-effective. As such, organizations should choose what level of QA is necessary for each part to help determine the most fitting approach.

    A spectrum of capabilities

    On one end of the spectrum, some applications may require little to no QA. Consider the forthcoming PancakeBot, a relatively simple 3D printer that extrudes pancake batter onto a hot skillet to create edible shapes.60 Even for the most exacting engineer, “close enough” for a dinosaur-shaped pancake may be enough to pass muster.

    Aerospace and defense firms, on the other hand, land on the much more stringent end of the QA continuum. The tolerance limit for aerospace manufacturers is typically less than 10 microns.61 Failure here could mean more than just a disappointing breakfast—it might well be catastrophic. Thus, A&D will likely need to move toward rigorous, feedback control-based system over the next several years; indeed, the sector is already relatively more advanced than others in this area.

    The majority of parts and products will likely fall between these two extremes, and manufacturers here have a more complex choice to make. They should first ascertain where on the spectrum they fall by developing a deep understanding of the requirements underpinning the need for QA, then develop a means to achieve it in a cost-effective way. Figure 6 depicts Deloitte’s view of the various QA approaches based on the level of quality required for the end product.

    DUP-1410_Figure 6. AM quality assurance continuum

    Low QA requirements: Taking a conventional manufacturing approach to QA

    In an environment with minimal or low QA requirements—such as, again, custom-shaped pancakes—a simple “eyeball” check might be enough to declare that a product has met standards. In situations with slightly more demanding requirements, engineers may require measurements or mechanical testing—a simulation of loading conditions in a laboratory—to verify performance.

    In fact, detailed process control of production operations is already fairly common for quality programs; adding AM represents a new layer on what is, for many, a well-established practice.

    Inspection technology like this is widely available today and is already regularly used in a variety of industries. Implementation may thus prove a lower barrier, provided that manufacturers invest in both training and equipping their workforce, and that customers will tolerate the result. Additionally, due to its relative ease of implementation, this can prove a useful interim approach for manufacturers as they develop more a robust, long-term QA approach.

    Organizations focusing on the least stringent quality levels may find themselves limited in their applications of AM. This sort of approach may be best suited for manufacturers within path I, using 3D printing for tooling, rapid prototyping, and other indirect applications. Some firms can also consider adopting low QA requirements within path III (developing and certifying new products with a high tolerance for variability) or within path II (building stopgap measures for keeping damaged equipment running while awaiting more permanent repairs). However, it is important to consider that manufacturers at this level may find it difficult to achieve scale by performing exhaustive inspection and testing of every part. Furthermore, firms operating at this level of QA may not realize more extensive supply chain benefits of AM, as they will be unable to certify any parts manufactured under different conditions.

    Medium QA requirements: An audit-based approach

    Organizations with the need for stricter QA considerations that still fall short of full implementation of the highly technical elements of the AM Quality Pyramid can consider taking some conventional approaches to developing and testing a part. They can then codify the results of those tests into a “recipe”: a detailed build procedure and prescription of build conditions that, through experience, have been shown to produce a part that passes inspection. During the actual build process, audit techniques can be applied to document that “recipe” conditions are met, regardless of where the part is built. This level of QA implementation relies on the creation of an auditable manufacturing process, and could require detailed calibration management procedures and integration of sensing technologies. Adopting an audit-based QA solution, and applying that audit capability in remote locations to guarantee quality, can enable firms to more fully leverage path II, supply chain evolution.

    Many manufacturers may be well positioned to adopt this level of QA relatively rapidly. Leading aerospace and defense firms already apply tightly controlled and documented processes to ensure quality on flight-critical parts.62 In fact, detailed process control of production operations is already fairly common for quality programs; adding AM represents a new layer on what is, for many, a well-established practice.63

    At this level, manufacturers may begin to see an exponential increase in data requirements due to the level of monitoring and the potential inclusion of supply chain partners in the QA process. (See sidebar “Addressing computing and data challenges.”) Thus, information management and assurance—the bottom level of the Quality Pyramid—grow in importance. Indeed, firms should make sure they have information management strategies and capabilities in place that will allow for data collection, storage, protection, and analysis.

    High QA requirements: Scaling the AM Quality Pyramid

    Manufacturers with the strictest QA requirements, such as those in the aerospace and medical device sectors, may require a full application of the AM Quality Pyramid: advanced build planning and monitoring capabilities, linked together with feedback control. This can help certify the quality of any part, on any machine with the capability to print it, in any location.

    Guaranteeing quality on any part anywhere also unlocks both dimensions of demonstrated AM value: product evolution and supply chain evolution.

    Internal investment in R&D will likely be essential to developing high-level QA capabilities; due to the competitive advantage it typically creates, early leaders may be tight-lipped about their techniques. To address the supporting factors described in the AM Quality Pyramid, manufacturers may need to integrate high-performance computing and manufacturing. Information management also becomes critical, as single builds can result in 10s to 100s of terabytes of data. While initial investments may be high, however, they can pay strong dividends. The ability to fully certify AM-manufactured parts, and thus reliably print them on demand, anywhere, will likely be a significant competitive advantage.

    Guaranteeing quality on any part anywhere also unlocks both dimensions of demonstrated AM value: product evolution and supply chain evolution. In this way, manufacturers can explore path IV: evolving supply chain with distributed manufacturing, developing advanced new products previously impossible to create through conventional methods, and potentially creating new operating models.

    Raising the bar

    As additive manufacturing continues to advance and moves beyond rapid prototyping into development of truly innovative parts and more efficient supply chains, it is important for manufacturers looking to take fuller advantage of AM’s potential to find a way to ensure the parts they produce can be of consistent and reliable quality. To do so effectively, manufacturers should consider the following actions:

    Evaluate the level of QA needed for each part. Not all parts or products will need the same level of scrutiny. Even within a single end product, manufacturers may find that one part—such as a hinge or bracket—can be held to a lower QA standard, while others, such as engine parts for the same aircraft, will need to pass the most stringent specifications. Assessing the level of QA actually needed can help ensure that manufacturers do not underprepare—and also that they do not over-invest in QA technologies that they may not need.

    Consider adhering to lower standards on the AM QA continuum in the interim while developing capabilities to enable a more stringent QA process in the long term. Rome wasn’t built in a day. Planning, building, and implementing a full QA process such as the AM Quality Pyramid takes time, training, and investment in new technologies, processes, and talent. Manufacturers can consider using approaches that fall lower on the QA continuum as a stopgap measure while developing more in-depth strategies. This may also ease the implementation process internally, as it gives an organization time to gradually incorporate and acclimate to new processes over time.

    Take a full view of the production process. With AM, it will be important to understand status not only during the build but well beforehand, via simulations and modeling. This can enable manufacturers to avoid the often costly and inefficient process of having to test copies of a part post-production, an approach ill suited to AM. Given the current state and availability of high-performance computing required for this sort of approach, it will be crucial to consider what plans—or partnerships—should be in place in order to make progress.

    Understand the data management challenges that may lie ahead. QA can require strong data management and access to high-performance computing. It will be important to determine what can be accomplished internally and whom to partner with to develop these skills.

    When developing a plan for developing QA capabilities, assess not only where you are but where you wish to be. Manufacturers residing in path I whose long-term strategy involves supply chain evolution may wish to concentrate on QA approaches that enable the ability to print across wide geographical distances. Conversely, those whose long-term strategy focuses more on leveraging AM to manufacture entirely new products may instead focus initial QA efforts on other technologies. Taking a strategic approach to growth helps develop a QA process that enables and supports business goals.

    As manufacturers look to adopt AM, creating a clear map to assuring consistent quality will remain a significant challenge. A systematic approach to quality assurance can help additive manufacturing continue to reach its potential.

    Deloitte Consulting LLP’s Supply Chain and Manufacturing Operations practice helps companies understand and address opportunities to apply advanced manufacturing technologies to impact their businesses’ performance, innovation, and growth. Our insights into additive manufacturing allow us to help organizations reassess their people, process, technology, and innovation strategies in light of this emerging set of technologies. Contact the authors for more information, or read more about our alliance with 3D Systems and our 3D Printing Discovery Center on www.deloitte.com.

    Credits

    Written by: Ian Wing, Brenna Sniderman

    Cover image by: Igor Morski

    Acknowledgements

    The authors would like to acknowledge several other contributors, who provided assisted in various ways throughout the process of developing this paper.

    Dr. Mark Cotteleer of Deloitte Services LP for his leadership in the development of the 3D Opportunity series of articles, including this piece.

    Dr. Wayne King and Dr. Neil Hodge, both of the Accelerated Certification of Additively Manufactured Metals Initiative at Lawrence Livermore National Laboratory, for lending their expertise around numerical simulation of additive manufacturing processes.

    Kagan Yaran, Joseph Vidalis, Ed Dobner, and Kevin Hom, of Deloitte Consulting LLP for conducting an initial literature review.

    Endnotes
      1. Rose Hansen, “Building the future: Modeling and uncertainty quantification for accelerated certification,” Science and Technology Review, January/February 2015, https://str.llnl.gov/january-2015/king, accessed November 5, 2015. View in article
      2. For a full discussion of these dynamics, see Mark Cotteleer and Jim Joyce, 3D opportunity: Additive manufacturing paths to performance, innovation, and growth, Deloitte Review 14, January 2014, http://dupress.com/articles/dr14-3d-opportunity/, or visit http://dupress.com/collection/3d-opportunity/ to view the full 3D Opportunity collection. View in article
      3. T. AlGeddawy and H. ElMaraghy, “Product variety management in design and manufacturing: Challenges and strategies,” Enabling Manufacturing Competitiveness and Economic Sustainability, September 2011, pp. 518–23. View in article
      4. US Government Accountability Office report to the chairman, Committee on Science, Space, and Technology, House of Representatives, 3D printing: Opportunities, challenges, and policy implications of additive manufacturing, June 2015, www.gao.gov/assets/680/670960.pdf; National Institute of Standards and Technology, “Measurement science for additive manufacturing program,” October 1, 2013, www.nist.gov/el/isd/sbm/msam.cfm; both accessed November 5, 2015. View in article
      5. US Government Accountability Office report to the chairman, Committee on Science, Space, and Technology, House of Representatives, 3D printing. View in article
      6. See Cotteleer and Joyce, 3D opportunity. View in article
      7. For further information about uses of AM in manufacturing approaches, see Mark Cotteleer, Jonathan Holdowsky, and Monika Mahto, The 3D opportunity primer, Deloitte University Press, March 6, 2014, http://dupress.com/articles/the-3d-opportunity-primer-the-basics-of-additive-manufacturing/ View in article
      8. Hansen, “Building the future.” View in article
      9. Cotteleer and Joyce, 3D opportunity. View in article
      10. Hansen, “Building the future.” View in article
      11. Billy Short, “Quality metal additive manufacturing (quality made) enabling capability,” Office of Naval Research, July 28, 2015, slideplayer.com/slide/6642475/, accessed November 5, 2015. View in article
      12. Gustavo Tapia and Alaa Elwany, “A review of process monitoring and control in metal-based additive manufacturing,” Journal of Manufacturing Science and Engineering, 136, no. 6, October 24, 2014; William E. Frazier, “Metal additive manufacturing: A review,” Journal of Materials Engineering and Performance 23, pp. 1917–28, April 8, 2014, http://lib2013.mirdc.org.tw/temp/cisc_news/144/Metal%20Additive%20Manufacturing-%20A%20Review.pdf, accessed November 5, 2015. View in article
      13. Frazier, “Metal additive manufacturing.” View in article
      14. Ibid. View in article
      15. “Tool path” refers to the path a cutting or shaping tool makes through space or material as it produces a desired part, product, or shape. View in article
      16. American Society for Testing and Materials, Standard terminology for additive manufacturing technologies, www.astm.org/Standards/F2792.htm. View in article
      17. Yijun Liu, “Fast multipole boundary element method (FastBEM) software for education, research and further development,” http://urbana.mie.uc.edu/yliu/Software/, accessed November 6, 2015. View in article
      18. Wayne King et al., “Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory,” Materials Science and Technology 31, issue 8, June 2015, pp. 957–68, www.maneyonline.com/doi/full/10.1179/1743284714Y.0000000728, accessed November 6, 2015. View in article
      19. Deepankar Pal et al., “An integrated approach to cyber-enabled additive manufacturing using physics based, coupled multi-scale process modeling,” proceedings of the Solid Freeform Fabrication Symposium, August 12–14, 2013, http://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-01-Pal.pdf, accessed November 6, 2015; Hansen, “Building the future.” View in article
      20. D. Hu, M. Labudovic, and R. Kovacevic, “Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing,” proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 217, no. 4, pp. 441–52, April 1, 2003, www.researchgate.net/publication/245386050_On-line_sensing_and_estimation_of_laser_surface_modification_by_computer_vision, accessed November 6, 2015. View in article
      21. Wayne King et al., “Overview of modelling and simulation of metal powder bed fusion process at Lawrence Livermore National Laboratory.” View in article
      22. Top 500 Supercomputing Sites, www.top500.org/lists/2015/06/, accessed November 6, 2015. View in article
      23. Mark William Schraad and Marianne M. Francois, “ASC additive manufacturing,” Los Alamos National Laboratory, June 8, 2015, http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-15-24605, accessed November 6, 2015. View in article
      24. Ibid. View in article
      25. Carolin Körner, Elham Attar, and Peter Heinl, “Mesoscopic simulation of selective beam melting processes,” Journal of Materials Processing Technology 211, no. 4, pp. 978–87, June 2011, www.scribd.com/doc/48415551/Korner-Mesoscopic-simulation-o-selective-beam-melting-processes#scribd, accessed November 6, 2015. View in article
      26. I.A. Roberts et al., “A three-dimensional finite elements analysis of the temperature field during laser melting of metal powders in additive layer manufacturing,” International Journal of Machine Tools and Manufacture 49, issues 12–13, July 2009. View in article
      27. 3DSIM, “Technology,” http://3dsim.com/technology, accessed November 6, 2015. View in article
      28. USNC/TAM, “A Workshop on Predictive Theoretical and Computational Approaches for Additive Manufacturing,” October 7–9, 2015, http://sites.nationalacademies.org/PGA/biso/IUTAM/PGA_168737, accessed November 6, 2015. View in article
      29. For further information regarding how use of collaboratively developed databases can build bodies of knowledge and ease analysis practices without increasing data load in other types of AM assessments, see Beth McGrath, Jaymes Hanna, Runze Huang, and Amar Shivdasani, 3D opportunity for life cycle assessments: Additive manufacturing branches out, Deloitte University Press, October 16, 2015, http://dupress.com/articles/additive-manufacturing-in-lca-analysis/. View in article
      30. Hansen, “Building the future” View in article
      31. Interview with Neil Hodge, solid mechanics/code developer, Methods Development Group, Lawrence Livermore National Laboratory, November 3, 2015. View in article
      32. Sebastian Berumen et al., “Quality control of laser- and powder bed-based additive manufacturing (AM) technologies,” Physics Procedia 5, pp. 617–22, 2010, www.sciencedirect.com/science/article/pii/S1875389210005158, accessed November 6, 2015. View in article
      33. Assumes 3GB per hour for full high-definition video, per https://help.netflix.com/en/node/87. View in article
      34. USNC/TAM, “A Workshop on Predictive Theoretical and Computational Approaches for Additive Manufacturing.” View in article
      35. Sebastian Berumen et al., “Quality control of laser- and powder bed-based additive manufacturing (AM) technologies.” View in article
      36. H. Krauss, C. Eschey, and M. F. Zaeh, “Thermography for monitoring the selective laser melting process,” proceedings of the Solid Freeform Fabrication Symposium, August 12–14, 2013, http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-76-Krauss.pdf, accessed November 6, 2015. View in article
      37. Prahalad K. Rao et al., “Online real-time quality monitoring in additive manufacturing processes using heterogeneous sensors,” Journal of Manufacturing Science and Engineering 137, no. 6, September 9, 2015. View in article
      38. Hans Rieder et al., “Online monitoring of additive manufacturing processes using ultrasound,” 11th European Conference on Non-Destructive Testing, October 6–10, 2014, www.ndt.net/events/ECNDT2014/app/content/Paper/259_Spies.pdf, accessed November 6, 2015. View in article
      39. Stefan Kleszczynski et al., “Error detection in laser beam melting systems by high resolution imaging,” proceedings of the Twenty Third Annual International Solid Freeform Fabrication Symposium, August 2012, http://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-74-Kleszczynski.pdf, accessed November 6, 2015. View in article
      40. Sebastian Berumen et al., “Quality control of laser- and powder bed-based additive manufacturing (AM) technologies.” View in article
      41. Ibid. View in article
      42. Corey Dunsky, “Process monitoring in laser additive manufacturing,” Industrial Laser Solutions for Manufacturing, September 12, 2014, www.industrial-lasers.com/articles/print/volume-29/issue-5/features/process-monitoring-in-laser-additive-manufacturing.html, accessed November 6, 2015. View in article
      43. Sebastian Berumen et al., “Quality control of laser- and powder bed-based additive manufacturing (AM) technologies.” View in article
      44. Makhabo Ramosoeu et al., “Additive manufacturing: Characterization of TI-6AI-4V alloy intended for biomedical applications,” South African Institute of Mining and Metallurgy, October 2010. View in article
      45. Emmanuel Rodriguez et al., “Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography,” Additive Manufacturing 5, pp. 31–39, January 2015. View in article
      46. “Scan rate” refers to the speed, typically measured in times per second, at which an imaging device is able to sample and capture its line of vision. View in article
      47. Jorge Mireles et al., “Automatic feedback control in electron beam melting using infrared thermography,” proceedings of the Twenty Fourth Annual International Solid Freeform Fabrication Symposium, August 2013, http://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-57-Mireles.pdf, accessed November 6, 2015. View in article
      48. Abdalla R. Nassar et al., “Intra-layer closed-loop control of build plan during directed energy additive manufacturing of Ti–6Al–4V,” Additive Manufacturing 6, March 2015. View in article
      49. EOS International, “Quality assurance in additive manufacturing,” www.eos.info/quality-assurance, accessed October 11, 2015. View in article
      50. “Closed overhang” refers to a feature supported on two edges, with an unsupported gap located in the center. This is a particularly challenging feature for powder-bed AM systems, as the un-solidified powder beneath the overhang dramatically reduces the ability of the in-process part to dissipate heat from the laser. Thus, as the overhang is being built, it is prone to “over baking” by the laser. View in article
      51. J. P. Kruth et al., “Feedback control of selective laser melting,” Katholieke Universiteit Leuven, https://lirias.kuleuven.be/bitstream/123456789/185342/1, accessed November 6, 2015. View in article
      52. Ibid. View in article
      53. American Society for Testing and Materials, Standard Standard guide for characterizing properties of metal powders used for additive manufacturing processes, www.astm.org/Standards/F3049.htm. View in article
      54. American Society for Testing and Materials, “New guide for nondestructive testing of additive manufactured metal parts used in aerospace applications,” www.astm.org/WorkItems/WK47031.htm, accessed November 6, 2015. View in article
      55. American Society for Testing and Materials, Committee F42 on Additive Manufacturing Technologies, www.astm.org/COMMITTEE/F42.htm, accessed November 6, 2015. View in article
      56. Ibid. View in article
      57. National Institute of Standards and Technology, Measurement science for additive manufacturing Program, October 1, 2013, www.nist.gov/el/isd/sbm/msam.cfm, accessed October 1, 2015. View in article
      58. Ibid. View in article
      59. While much of the conversation has focused on inadvertent errors as the root cause of quality lapses, it is important to note that business leaders must also consider deliberate defects introduced for purposes of sabotage. This issue is of particular concern in the highly connected manufacturing infrastructure required for AM at scale. To begin addressing this challenge, the National Institute for Standards and Technology hosted a symposium in February 2015, finding that existing guidance failed to adequately address cybersecurity in AM and calling for proposed guidance. View in article
      60. Miguel Valenzuela, “PancakeBot—the world’s first pancake printer!.” Kickstarter, March 1, 2015, www.kickstarter.com/projects/1853707494/pancakebot-the-worlds-first-pancake-printer, accessed October 16, 2015; also see Kim Porter et al., 3D opportunity serves it up, Deloitte University Press, June 18, 2015, http://dupress.com/articles/3d-printing-in-the-food-industry/. View in article
      61. John Coykendall et al., 3D opportunity for aerospace and defense: Additive manufacturing takes flight, Deloitte University Press, June 2, 2014, http://dupress.com/articles/additive-manufacturing-3d-opportunity-in-aerospace/. View in article
      62. National Aeronautics and Space Administration, “Standard materials and processes requirements for spacecraft,” July 11, 2008; download at https://standards.nasa.gov/documents/detail/3315591. View in article
      63. Bell Helicopter, “Flight safety, primary, and critical parts,” www.bellhelicopter.com/en_US/Suppliers/ProductionDevelopment/FlightSafetyPrimaryandCriticalParts/Flight_Safety_Primary_and_Critical_Parts.html, accessed November 6, 2015. View in article
    Show moreShow less

    Topics in this article

    Smart manufacturing , Emerging technologies , 3D Opportunity , Operations , Strategy , Supply Chain , Digital Transformation

    Deloitte Consulting

    Learn more
    Download Subscribe

    Related

    img Trending

    Interactive 3 days ago

    Ian Wing

    Ian Wing

    Senior Consultant | Deloitte Consulting LLP

    Ian Wing is a manager in Deloitte Consulting LLP’s Strategy & Operations practice. He brings a decade of experience solving complex challenges for federal and military customers to bear on his client engagements. Ian’s prior experience was in research and development at a major defense contractor, and he now focuses on helping clients realize business value and develop new capabilities with additive manufacturing and other advanced technologies.

    • iwing@deloitte.com
    • +1 571 814 6834
    Brenna Sniderman

    Brenna Sniderman

    Center for Integrated Research Lead

    Brenna leads the Center for Integrated Research, where she oversees cross-industry thought leadership for Deloitte. In this capacity, Brenna leads a team of researchers focused on global shifts in digital transformation, trust, climate, and the future of work; in other words, how organizations can operate and strategize in an age of digital, cultural, environmental, and workplace transformation. Her own research focuses on connected digital and physical technologies and their transformational impact. She works with other thought leaders to deliver insights into the strategic, organizational, leadership, and human implications of these technological changes. Prior to joining Deloitte, Brenna was a senior director at Forbes Insights, the thought leadership division within Forbes Media, where she oversaw and conducted primary cross-industry research on topics such as innovation, technology, transformation, Big Data and privacy/security, philanthropy and talent management. Her research focused on primary qualitative and quantitative research among senior-level executives at some of the world’s largest organizations, and Brenna worked closely with clients to select appropriate research topics, develop hypotheses, and design methodologies to conduct research to test them. She also oversaw analysis of data and development and publication of white papers, infographics, and other tools. Brenna has traveled and spoken on topics such as trust and ethics, Industry 4.0, and smart factories. Brenna’s research is available on Deloitte Insights, MIT Sloan Management Review, and Forbes.com, among other publications. Brenna received her Bachelor's degree in Economics from the University of Pennsylvania. She earned her Master’s degree in Strategic Communications from Columbia University. Brenna lives just outside Philadelphia with her husband, twin sons, and dog.

    • bsniderman@deloitte.com
    • +1 929 251 2690

    Share article highlights

    See something interesting? Simply select text and choose how to share it:

    Email a customized link that shows your highlighted text.
    Copy a customized link that shows your highlighted text.
    Copy your highlighted text.

    3D opportunity for quality assurance and parts qualification has been saved

    3D opportunity for quality assurance and parts qualification has been removed

    An Article Titled 3D opportunity for quality assurance and parts qualification already exists in Saved items

    Invalid special characters found 
    Forgot password

    To stay logged in, change your functional cookie settings.

    OR

    Social login not available on Microsoft Edge browser at this time.

    Connect Accounts

    Connect your social accounts

    This is the first time you have logged in with a social network.

    You have previously logged in with a different account. To link your accounts, please re-authenticate.

    Log in with an existing social network:

    To connect with your existing account, please enter your password:

    OR

    Log in with an existing site account:

    To connect with your existing account, please enter your password:

    Forgot password

    Subscribe

    to receive more business insights, analysis, and perspectives from Deloitte Insights
    ✓ Link copied to clipboard
    • Contact Us
    • Submit RFP
    • Media enquiries
    Follow Deloitte Insights:
    Global office directory Office locations
    ZA-EN Location: South Africa-English  
    About Deloitte
    • Home
    • Newsroom
    • Code of Conduct
    • Report unethical conduct
    • Office locator
    • Global Office Directory
    • Press releases
    • Submit RFP
    • Contact us
    • Deloitte Insights Blog
    • Social Media
    • About Deloitte in Malawi
    • About Deloitte in Zimbabwe
    • About Deloitte in Mozambique
    • About Deloitte in Botswana
    • About Deloitte in Zambia
    • https://sacoronavirus.co.za
    Services
    • Audit & Assurance
    • Consulting
    • Financial Advisory
    • Risk Advisory
    • Tax & Legal
    • Deloitte Private
    Industries
    • Consumer
    • Energy & Resources
    • Financial Services
    • Life Sciences & Healthcare
    • Government and Public Services
    • Technology, Media & Telecom
    Careers
    • Job search
    • Experienced Hires
    • Executives
    • Students
    • Life at Deloitte
    • Alumni
    • About Deloitte
    • Terms of use
    • Privacy
    • Cookies
    • PAIA Manual
    • About Deloitte Africa
    • Avature Privacy
    • Standard terms for the provision of goods and services to Deloitte & Touche

    © 2023. See Terms of Use for more information.

    Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee (“DTTL”), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities.  Please see www.deloitte.com/about for a detailed description of DTTL and its member firms.