Manufacturing is poised to become one of the biggest beneficiaries of 5G capabilities,15 with the technology knocking down many of the barriers that have prevented IoT from achieving its full potential in smart factories. Many manufacturers are looking to 5G capabilities to unleash a new wave of productivity gains as they max out the capabilities of existing wireless options.
Base scenario: Building the 5G enabling platform. Leaders at our manufacturer decide to build a private 5G edge network to support current and anticipated mission-critical factory operations. Indeed, many large organizations are taking steps toward building networks—enabling owner control over connectivity, performance, and security16 —to advance smart factory and Industry 4.0 ambitions. Private networks are not new, but the addition of a 5G edge can unleash a wave of automation and operational efficiency gains. Some companies, such as John Deere, are going as far as acquiring their own spectrum;17 in Germany, the government allocated private spectrum to automotive OEMs such as Audi and Mercedes-Benz.18
Stacked use case in manufacturing: Asset monitoring. As part of the 5G edge implementation, our manufacturer outfits its factory with wireless sensors connected to the 5G edge platform, which collects, monitors, and analyzes factory asset performance. In this respect, the 5G capabilities offer huge benefits over other forms of connectivity. It not only supports a vast number and wide variety of devices—it provides 24/7 ubiquitous and deep coverage to reach difficult locations in challenging environments. Moreover, since 5G offers the same if not better speed, latency, and throughput as wired ethernet connections, 5G untethers our manufacturer from its web of wired cabling, enabling more flexible and rapid production setups and teardowns.19
The data flows from these devices provide a clear line of sight into asset health and performance and generate insights that help optimize and improve the overall manufacturing process. For example, the system sends alerts to maintenance technicians if machines breach set tolerance levels, indicating imminent failure. It provides the plant engineer with the information needed to adjust sensitive production processes to reflect changing environmental conditions such as humidity. And it keeps the plant supervisor up to date with real-time visibility into production uptime.
Our manufacturer adopts a deliberate approach, rolling out targeted 5G applications and tracking performance metrics to validate positive outcomes. Early success inspires our manufacturer to experiment with new applications. Specifically, with everything on the same network, leaders realize that it will be relatively easy to interconnect existing applications to autonomously communicate, synchronize, and self-optimize processes within the manufacturing environment.20
Stacked use case in manufacturing: Quality sensing. The manufacturer adds a visual quality inspection system to the 5G edge platform to enable continuous product inspection, defect detection, and predictive quality analysis. Here, 4K cameras rely on 5G’s high capacity and data rates to feed high-resolution images to machine learning inference algorithms at the edge, where they are analyzed and acted upon instantly. Real-time quality detection reduces the need for manual inspections throughout the process and dramatically reduces scrap.
The sensors, machines, and applications that form the heart of the IoT generate massive amounts of data, a flow that can tax most networks. IoT devices will generate terabytes of structured and unstructured data.21 The 5G edge platform is explicitly engineered to handle the rising number of connected devices and the exponential growth in data traffic they will generate. And instead of sending all this data back and forth to the cloud for analysis, the 5G edge platform processes data locally, reducing transmission costs, latency, and complexity.22
Stacked use case in manufacturing: Augmented reality. With the COVID-19 pandemic curtailing air travel, our manufacturer learns that several large Chinese manufacturers have adopted augmented reality (AR) solutions for remote service and maintenance support on their imported equipment. The AR glasses enable experts in Germany and Austria to provide remote technical support for their purchased manufacturing equipment.23 In partnership with its local communications service provider, Schneider Electric is also trialing AR in maintenance technician activities and implementing a telepresence robot for remote visits.24 Inspired by these applications, our manufacturer begins exploring opportunities to utilize AR solutions to connect offsite engineers with its maintenance workers using real-time 3D visualization to triage and repair its complex bespoke machinery.
AR remote and robotic applications in particular require ultra-reliable, low-latency connectivity to provide a satisfactory user experience.25 5G’s capability to support super-fast, high two-way data rates and low latency wireless connections reduce video applications’ jitter and lag, making them more natural and enjoyable to use. 5G, combined with local edge processing, makes these time-sensitive applications possible.26
Moreover, 5G enables multiple networks to exist on the same platform. The network operator can tailor each network’s characteristics to meet specific applications’ quality-of-service requirements.27 This practice, also known as network slicing, allows the manufacturer to provision a separate low-latency network for mission-critical, time-sensitive applications such as AR or precision robotics while maintaining separate networks for nontime-sensitive applications.28
Stacked use case in manufacturing: Advanced data analytics. The secondary and tertiary benefits from the 5G edge transformation platform and stackable use cases derive from the collected data and analytics. Manufacturers can use data insights to optimize operational activities in and across all production facilities at almost every manufacturing process phase. In one case, analysis of production line data across multiple plants suggested that the manufacturer could reduce furnace temperatures and cure times without affecting product quality, dramatically improving energy management and overhead costs.29
The above scenarios illustrate how companies in very different industries can deploy the 5G edge as a foundation to harness powerful new technologies and innovate purposefully at scale. The retailer uses the platform to enhance its brick-and-mortar customer experience; the manufacturer uses it to drive greater efficiency, automation, and insights.